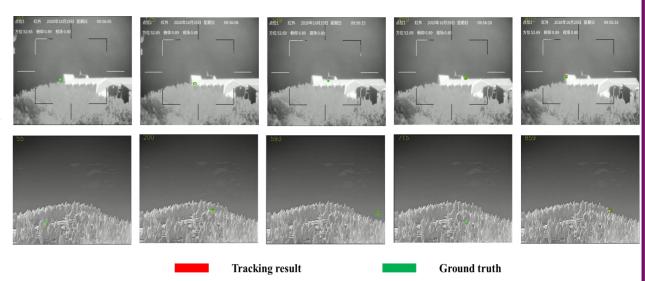
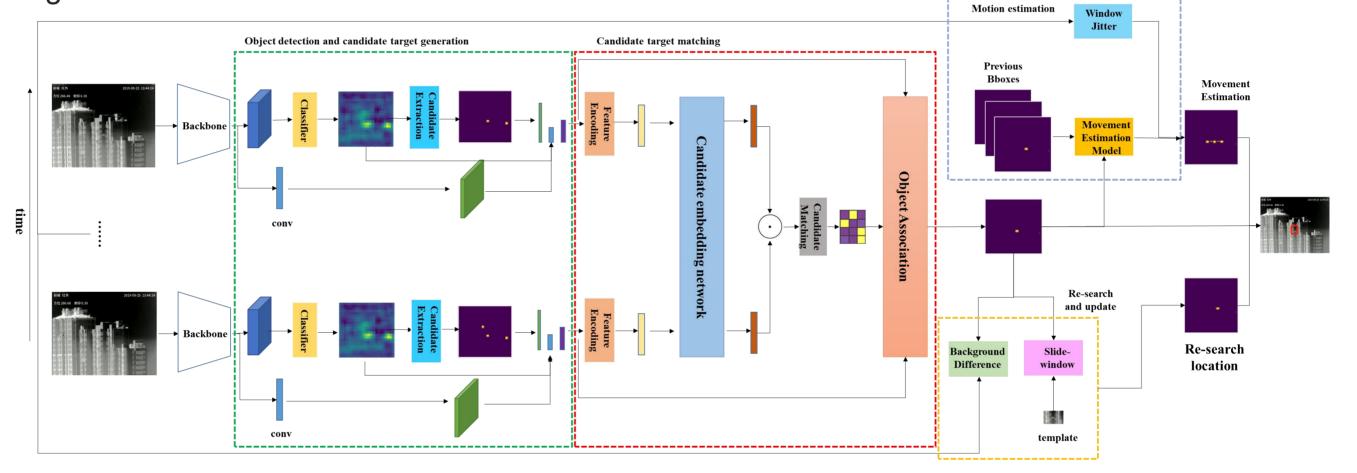


Jointly Modeling Association and Motion Cues for **Robust Infrared UAVs Tracking**


Boyue Xu, Ruichao Hou, Jia Bei [™], Tongwei Ren, Gangshan Wu

State Key Laboratory for Novel Software Technology, Nanjing University

Introduction


Unmanned aerial vehicles (UAVs) tracking aims to continuously track UAV targets in complex environments to meet the demands of tasks related to security, traffic management, among others

We proposed a drone tracker named JMAMC, which can stably track drone targets that are small in size and have complex motion trajectories under the infrared modality

Method

The input of the method is a sequence of continuous infrared modality drone images, and the output is the tracking result for each frame. Initially, a backbone network is employed to extract the image features and encode the candidate targets. These targets are then matched with previously tracked targets, obtaining preliminary tracking results. To address complexities arising from the drone target's motion and the relatively small size of the target, the preliminary tracking results along with prior tracking results are fed into a motion estimation module and a re-search and update module for optimization, ultimately yielding the final tracking results

Experiments

Dataset: Anti-UAV dataset

Training : Test = 160:123

Challenges: Small target, Fast Movement, Out of focus, Background clutter, Scale variation

Metrics: Tracking accuracy

Comparison with the SOTA: The method is superior to all the tracking methods in accuracy score

Ablation Study: The experiment demonstrates the effectiveness of each component of the method

Data augmentation	Motion estimation	Re-search	Ablation
20			56.37
✓			60.35
✓	✓		61.60
✓	√	✓	65.02
Method	Source	Source Cor	
TransformerTrack [27]	CVPR2	CVPR21	
TransT [7]	CVPR2	CVPR21	
STMTrack [28]	CVPR2	CVPR21	
HiFT [29]	ICCV2	ICCV21	
Stark [26]	ICCV2	ICCV21	
OStrack [30]	ECCV2	ECCV22	
1st tracker(winner)	Anti-UAV chall	Anti-UAV challenge 2021	
2nd tracker	Anti-UAV chall	Anti-UAV challenge 2021	
3rd tracker	Anti-UAV chall	Anti-UAV challenge 2021	
JMAMC		and Assessment Control	65.02

