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Abstract UAV tracking plays a crucial role in com-

puter vision by enabling real-time monitoring UAVs,

enhancing safety and operational capabilities while ex-

panding the potential applications of drone technology.

Off-the-shelf deep learning based trackers have not been

able to effectively address challenges such as occlusion,

complex motion, and background clutter for UAV ob-

jects in infrared modality. To overcome these limitations,

we propose a novel tracker for UAV object tracking,

named MAMC. To be specific, the proposed method

first employs a data augmentation strategy to enhance

the training dataset. We then introduce a candidate

target association matching method to deal with the

problem of interference caused by the presence of a large

number of similar targets in the infrared pattern. Next,

it leverages a motion estimation algorithm with window

jitter compensation to address the tracking instability

due to background clutter and occlusion. In addition, a

simple yet effective object re-search and update strategy

is used to address the complex motion and localization

problem of UAV objects. Experimental results demon-

strate that the proposed tracker achieves state-of-the-art

performance on the Anti-UAV and LSOTB-TIR dataset.

Keywords Object tracking · UAV · infrared modality ·
motion estimation

1 Introduction

Unmanned aerial vehicles (UAVs) have gained signif-

icant momentum in recent years due to their ability
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to operate in diverse applications, such as photogra-

phy [1], transportation [2] and classification [3, 4]. How-

ever, the technology has also raised significant security 

and privacy concerns. Therefore, to avoid certain haz-

ards caused by threatening UAVs, it is important to 

detect and continuously track their locations. To ad-

dress these issues, an effective tracking system for UAVs 

is urgently needed. Traditional visual object tracking 

methods [5–7] face significant challenges when tracking 

UAVs due to their small size and agile movements, espe-

cially in complex backgrounds or low-light conditions [8].

These challenges can be mitigated by employing infrared 

modalities, which are capable of capturing the thermal 

radiation of objects in any environment, regardless of 

weather conditions. HMFT [9] effectively combines RGB 

and infrared data for aerial tracking, resulting in impres-

sive performance. However, the solution introduces new 

challenges, as UAV targets in the infrared modality only 

provide contour information, which can be easily con-

fused with images generated by other thermal radiation.

Moreover, tracking UAV objects in complex situations,

such as fast-moving targets and objects that are lost for 

a long duration, remains a major challenge in infrared 

modalities. With the development of deep learning, most 

current object tracking methods can be broadly classi-

fied into two categories. The first category is based on 

the Siamese network [10–13], which utilizes relevance 

matching to identify the region that best matches the 

target template within a given search region. Represen-

tative methods in this category include SiamFC [10]

and SiamRPN [12]. With the development of trans-

former [14, 15], the correlation ability between search 

region and templates has been further improved [5, 13].

However, these methods suffer from the common prob-

lem of selecting an appropriate search region, which

is not suitable for fast moving objects and may result
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in target drift. The second category of tracking meth-

ods is known as tracking by detection, exemplified by 

ATOM [16] and DIMP [17]. These methods first employ 

a detector to localize the target within the image and 

subsequently perform association matching to generate 

the tracking output. Due to the flexible motion of the 

UAV target, tracking by detection methods is better 

suited for UAV tracking tasks. The Keep-Track [18] has 

recently been introduced as a robust and highly effec-

tive tracking method. However, it still faces significant 

challenges such as occlusion and complex motion that 

require practical solutions.

The main contributions of our work are summarized

In this paper, we propose a novel tracking network 

named MAMC. The proposed network consists of a 

detector to identify candidate objects and an object 

association network to filter out irrelevant objects. To 

overcome the challenges of UAV tracking, we propose a 

motion estimation module to mitigate the object track-

ing failure due to background clutter and occlusion.

In addition, we employ a target re-search and update 

module to resolve issues related to complex motions.

We evaluate the proposed tracker using the challenging 

Anti-UAV dataset [19], which includes multiple scenarios 

involving small objects, complex movement and occlu-

sions, among other challenges. The proposed tracker 

achieves the best results on the dataset, demonstrating 

its efficacy in complex scenarios.

as follows:

– We propose a robust tracker for UAV tracking in

infrared modality, which can effectively solve the

problem of unstable UAV tracking in complex envi-

ronments.

– We propose a motion estimation module to address

the occlusion and background clutter problems faced

by UAV tracking in the infrared modality.

– We design the target re-search and update module

to address the complex motion trajectory and small

target problems.

2 Related Work

2.1 UAV Tracking

improve the tracking accuracy of small UAVs by us-

ing detection-based tracking methods [23]. Additionally,

attention mechanisms and siamese networks [10] were 

combined to accurately locate targets in images [24].

Some scholars also attempted to address the drawback of 

network tracking of UAVs through post-processing [25].

However, these methods suffer from some drawbacks,

such as slow speed or inadequate handling of small tar-

gets, making it difficult to address the current challenges 

UAV tracking is one of the sub-tasks of visual object 

tracking that has received considerable attention these 

years due to the challenges posed by the small size and 

high speed of UAV targets. To overcome these chal-

lenges, some trackers used discriminative correlation 

filter (DCF) [20] to track and combine spatiotemporal 

contextual information [21, 22]. Others attempted to

of UAV tracking.

2.2 Infrared Object Tracking

With the limitations of RGB trackers in dealing with 

dark nights and complex backgrounds, infrared object 

tracking emerged as a promising solution in recent 

years [26–28]. However, infrared object tracking faces the 

main challenge of low resolution, resulting in the avail-

ability of only contour information. Therefore, effectively 

extracting infrared modal information is a difficult issue.

Yu et al. [29] proposed a method of extracting dense 

samples around the sample by using the Histogram of 

Oriented Gradients (HOG). With the development of 

deep learning, powerful capabilities in feature extrac-

tion were shown [30]. Recently, SiamSTA [25] and some 

other trackers were designed for infrared modalities and 

achieved excellent results. Meanwhile, HSSNet [31], also 

based on SiamFC, leverages a spatial awareness network 

to enhance discriminative ability by merging hierarchical 

features. However, infrared images lack color and text 

information, which may degrade tracking accuracy. Ad-

ditionally, HSSNet used AlexNet [32] to extract features,

resulting in weak feature extraction. To address the issue,

MLSSNet [33] applied a spatial attention mechanism 

on low-level features to enhance local features and a 

channel attention mechanism on high-level features to 

distinguish features. Similarly, MMNet [34] applied a 

fine-grained aware network (FANet) module on low-level 

features to enhance fine-grained features. However, both 

networks used AlexNet as the backbone, which may not 

have a significant impact on multi-layer features.

3 Method

The structure of the method is depicted in Fig. 1. Ini-

tially, the proposed method first employs a backbone [35]

to extract regional features and uses an object classi-

fier [18] to classify them, with the highest scoring targets 

selected as candidates. Next, features of each candidate 

target are encoded along with the classifier score and 

target position into a vector using the feature candi-

date embedding network, which is referenced from the
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Fig. 1 The framework of the proposed method, consists of a target detection and candidate target generation module, a
candidate target matching module, a motion estimation module and a target re-search and update module.

The following module is the motion estimation mod-

ule, which integrates motion estimation. Initially, this

module calculates the background offset through motion

estimation and then establishes a motion estimation pre-

diction model to forecast the potential position of the

target in the current frame. Finally, the target re-search

and update module judges the target size and tracking

stability. If the target is large and undergoes drift, the

proposed method employs global re-search to relocate its

location. In contrast, if the target is small, the module

employs optical flow estimation and background separa-

tion to predict and track it. The final tracking results

are obtained by considering the outcomes of all these

Keep-Track [18]. These feature embeddings are then 

used to compute a candidate feature assignment matrix 

between different frames. The assignment matrix repre-

sents the similarity between candidates vi and vj . The 

assignment matrix is input into the object association 

module [18], which associates all detected objects in 

the current frame with those in the previous frame and 

classifies them as newly appeared, kept appearing, or 

disappeared. The proposed method then computes the 

detection confidence and updates the object detection 

weights after association. It is the effective association 

operations of Keep-Track that enable it to stably track 

objects in interference scenarios.

modules together.

3.1 Motion Estimation

UAV tracking in infrared modality often encounters chal-

lenges such as occlusion or background clutter, leading

to tracking failure. To address the issue, we use the
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Fig. 2 Detailed design of the motion estimation module.

method of Kalman filter [36], which is an algorithm 

that employs a linear equation of state to optimally 

estimate the system state based on the observed input 

and output data. It is well-suited for changing systems,

especially in the field of tracking where many current 

target tracking algorithms, such as DeepSORT [37] and 

StrongSORT [38].

Xk = AXk−1 +Q

As shown in Fig. 2. To utilize the motion estimation 

for predicting small object tracking, we describe the 

object’s trajectory in the image using four-dimensional 

coordinates(x, y, dx, dy), which respectively represent 

the abscissa, ordinate, lateral velocity, and longitudinal 

velocity of the object. We first build a motion model 

and an observation model of the object:

, (1)

Zk = HXk +R, (2)
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where Xk is the system state matrix, Zk is the observa-

tion matrix, A represents the state transition matrix,

which describes the position change of the object, and Q

and R represent the predicted noise covariance matrix

and system noise matrix, H represents the observation

transition matrix, describing the actual motion changes

of the object in each frame. To initialize the model, we

use the annotation information of the first frame.

After each frame, we perform prediction and update

operations. The prediction operation predicts the state

of the current moment based on the system state at

the previous moment as Eq.(1), and calculates the error

matrix:

Pk = APk−1A
T +Q, (3)

where Pk is the error matrix, calculated by the state

transition matrix and the predicted noise covariance

matrix Q.

After the prediction, we perform an update operation

that integrates the estimated state and the observed

state at the current moment to estimate the optimal

state:

Kk = PkH
T
(
HPkH

T +R
)−1

, (4)

X
′

k = Xk +Kk (Zk −HXk) , (5)

P
′

k = Pk −KkHPk, (6)

where Kk represents the motion estimation gain, R

represents the measurement noise covariance matrix, H

represents the observation matrix, and Zk represents

the observed value at time k; X
′

k and P
′

k represent the

[
Vx

V

updated system state matrix and the updated error 

matrix respectively. The final output of the corrected 

prediction state is the final prediction coordinates. To 

address the issue of camera shake during tracking, which 

causes the prediction result to shake, we calculate the 

window jitter of the front and rear frames using the 

Lucas-Kanade method [39]. We then use the offset to 

further correct the prediction:

y

]
= D

[
−
∑

i Ix (qi) It (qi)

−
∑

i Iy (qi) It (qi)

]
, (7)

D =

[ ∑
i Ix (qi)

2 ∑
i Ix (qi) Iy (qi)∑

i Iy (qi) Ix (qi)
∑

i Iy (qi)
2

]−1

, (8)

where Vk and Vy represent the camera offset velocity

horizontally and vertically at this frame, Ix(qi) and

Iy(qi) represents the partial derivative of point qi to x

and y. Finally, the lensing shake offset is superimposed

on the motion estimation model results to obtain the

final result.
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Fig. 3 Detailed design of the target re-search and update
module.

3.2 Re-search and Update

UAV tracking often faces the challenge of object drift

and complex motion, which can result in tracking failure.

To address the issue, we propose a target re-search and

update module which is shown in Fig. 3. This module

mainly addresses the problem of target loss caused by

complex motion trajectories, using different methods to

handle targets of varying sizes.

For small targets, we use background subtraction

to locate moving targets in the frame and select new

candidates by computing the distance to the previously

lost target. For larger targets, we use a global matching

approach to directly find the lost targets. When the

tracking target is lost, we first judge the size of the

target. If the target is smaller than W×H pixels, we

consider it to be a small target, which is easily sub-

merged in background noise and ignored by the network.

The reason for distinguishing between large and smalle

targets is that UAV targets mostly have a relatively

fixed shape, often appearing as rectangles in images.

Measuring their width and height provides a better way

to differentiate between target sizes. However, since the

target is still moving relative to the background, we

perform background differences using previous frames,

followed by erosion and dilation operations to enlarge

the moving pixels and make them more visible. We then

judge the edge contours of the moving pixels, and if

the contour is larger than N pixels, we consider it a

candidate target. If no candidate targets are found, this

module will retain the results from the previous frame.

In fact, such cases are rare, as the method used by the

module is able to keenly capture moving targets within

the frame. If the target remains stationary, retaining the

results from the previous frame can provide stable track-

ing of the target. Finally, we perform candidate target

matching operations. We select candidate points whose

distance from the nearest credible result with judgment

confidence greater than K before target drifting is less

than M as the current frame result. If there is no such
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For large targets with a size greater than H×W, we

employ a simple yet efficient template-matching strategy

after the target is lost. We use sliding window matching

with the target given in the first frame as the template

and perform normalized square difference matching in

Fig. 4 Samples of Anti-UAV dataset, the ground truth is 

marked in green.

result, we expand the search region and try the search 

again.

the frames where the object is lost. such as the formula:

R(x, y) =

∑
x′,y′ (M (x′, y′)− I (x+ x′, y + y′))

2√∑
z′,y′ M (x′, y′)

2 ·
∑

z′,y′ I (x+ x′, y + y′)
2
,

(9)

where R(x, y) represents the matching degree between

the current region and the template, where the closer to

0, the higher the matching degree; M(x, y) and I(x, y)

represent the pixel in the template and search region,

respectively.

We take the difference, square and sum operations to

obtain the matching degree of the current location and

identify the location with the highest matching degree

in the image as the target location. Simultaneously, we

update the network data to ensure follow-up tracking

effects.

4 Experiments

4.1 Experimental Settings

Datasets. We evaluate the effectiveness of the proposed

method by using the Anti-UAV Competition dataset. As

shown in Fig. 4, the dataset comprises over 100 complex

scenes involving UAVs of varying sizes (large, medium,

small, and tiny), as well as diverse backgrounds, includ-

ing clouds, mountains, buildings, and seascapes. Further-

more, the dataset presents complex situations such as

Fig. 5 Samples of LSOTB-TIR dataset, the ground truth is 

marked in red
.

occlusion, rapid motion, and targets out of sight. Most

of the sequences in the dataset are long-term, providing

an opportunity to test the robustness and effectiveness

of the tracker in challenging scenarios. The evaluation

aims to determine the reliability of the proposed method

in accurately tracking UAVs in these complex scenarios.

The performance of our approach is analyzed in terms

of its ability to handle the aforementioned challenges.

To further validate the effectiveness of the proposed 

method, we also conduct experiments on the LSOTB-

TIR [40] dataset. This dataset not only includes UAV 

targets but also contains a wide range of common in-

frared targets, as depicted in Figure

Evaluation metric.

5.

The Anti-UAV competition em-

ploys an official evaluation metric that calculates the

average Intersection over Union (IoU) of all video se-

quences. The accuracy is calculated as:

ACC =
1

T

T∑
t=1

IoUt × δ (vt > 0) + pt × (1− δ (vt > 0)),

(10)

where T denotes the number of frames in the video

sequence, iout represents the IoU of the t-th frame,

pt denotes the predicted visibility flag. Specifically, pt
equals 1 when the predicted bounding box is empty,

and 0 otherwise. Moreover, vt denotes the ground-truth

visibility flag of the target. The indicator function δ(vt >

0) is equal to 1 when vt > 0, and 0 otherwise. The metric

is designed to assess the performance of object detection

and tracking algorithms in detecting and tracking UAVs.

It provides a rigorous and objective measure of the

accuracy of the predicted bounding boxes compared to

the ground-truth annotations. The evaluation metric

promotes transparency and fairness in the competition

and enables meaningful comparisons of the performance

of different algorithms.

On the LSOTB-TIR [40] dataset, we use the pre-

cision and success metrics as provided by the dataset
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Furthermore, we confirm that tracking confidence

greater than 0.8 indicates stable tracking results and

can be directly used. In turn, tracking confidence less

than 0.3 indicates tracking failure, which needs to be

creators. Precision refers to the accuracy of the predicted 

bounding box, measured as the Euclidean distance be-

tween the center points of the predicted box and the 

ground truth box. Generally, if the Euclidean distance 

between the center points of the ground truth box and 

the predicted box is less than 20 pixels, it is considered 

as accurate localization. Success rate measures the IoU 

between the predicted box and the ground truth box.

If the IoU exceeds a certain threshold, the tracking is 

considered successful.

Network parameters. The proposed method is im-

plemented using the PyTorch 1.10 platform with an i9 

CPU, 64GB RAM, and a RTX3090 GPU with 24GB 

memory. We use the Keep-Track [18] as our baseline, and 

we follow its basic hyperparameters. For pre-training,

we utilize the weights of baseline, while for finetuning,

we employ the Anti-UAV training set [19]. To adapt 

to the characteristics of UAVs in infrared mode, we 

perform data enhancement on the dataset, including 

random occlusion of the target, rotation from -45° to 

45°, and blurring of the target, among others. This is 

done to improve the generalization ability of the model 

to complex situations.

handled by the following two modules.

4.2 Quantitative Evaluation

The evaluation of the proposed tracker is conducted by 

comparing its performance with that of other competing 

methods on the test set of the Anti-UAV dataset [19]

and LSOTB-TIR dateser [40]. To ensure fairness and 

reliability, all RGB-based tracking methods are fine-

tuned on the training set of the corresponding infrared 

dataset.

Table 1 Comparison results of the proposed method against
the competing trackers on Anti-UAV test set. The best results

The comparison results are presented in Table 1,

which employs official evaluation metrics on the test 

set. The proposed tracker has demonstrated superior 

performance compared to all other trackers on the test 

set, achieving a score of 65.02%. The score is 0.58%

higher than that of the second-ranked tracker which is 

the champion algorithm of the Anti-UAV competition,

which introduce a three-stage re-detection mechanism 

to re-detect targets. Furthermore, the score is 5.94%

higher than that of the Stark [41] which is one of the 

newest trackers. These results provide strong evidence 

for the effectiveness of the proposed tracker in complex 

drone tracking scenarios. It is worth mentioning that 

the PVT++ [42] is the latest motion-estimation based 

method, achieving the fastest tracking speed. However,

are highlighted in bold.

Method Source Score FPS
HiFT [43] ICCV21 37.87 127

SiamTPN [44] WACV22 40.46 80
STMTrack [45] CVPR21 40.86 37
TCTrack [46] CVPR22 41.59 160 

UDAT [47] CVPR22 44.17 80
PVT++ [42] ICCV23 44.98 200
OStrack [48] ECCV22 46.88 60
TransT [13] CVPR21 52.14 50
TOMP [49] CVPR22 53.42 25

TransformerTrack [50] CVPR21 54.75 26
RTS [51] ECCV22 55.12 30
Stark [41] ICCV21 59.08 26
3rd tracker Anti-UAV 2021 63.80 -
2nd tracker Anti-UAV 2021 63.88 -

1st tracker (winner) Anti-UAV 2021 64.44 -
MAMC 65.02 35

Table 2 Comparison results of the proposed method against
the competing trackers on LSOTB-TIR test set. The best
results are highlighted in bold.

Method Year Precision Success
HSSNet [52] 2019 0.52 0.41
MCFTS [53] 2017 0.64 0.48
SiamSAV [54] 2021 0.70 0.

58STAMT [55] 2022 0.71 0.
58GFSNet [56] 2021 0.76 0.

64CMD-DiMP [57] 2021 0.81 0.62
MAMC 0.81 0.69

our method still leads it by 10.04%. This is because the

motion trajectory of UAV targets is a combination of

the UAV’s trajectory and the camera’s trajectory, often

resulting in back-and-forth movements in the image.

This poses a significant challenge for accurate position

estimation. The proposed motion estimation module

in this method estimates not only the target’s motion

trajectory but also compensates for the offset caused by

camera motion. The combined result provides the true

trajectory of the UAV in the frame, effectively solving

this problem.

The superior performance of the proposed tracker

can be attributed to its ability to accurately localize

UAVs against small targets and jamming backgrounds

and self-correct after tracking problems. The ability

to accurately localize UAVs in challenging scenarios is

of paramount importance for real-world applications

such as border control, public safety, and infrastructure

In the experiments on the LSOTB-TIR [40] test set,

we compare our method with several state-of-the-art 

methods, as shown in Table 2. In terms of Precision, we 

achieve the same score as the best-performing method.

However, in terms of Success, our method outperform 

the best-performing method by 7%.

protection.
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Fig. 6 Qualitative comparison of the proposed tracker in handling different challenging scenarios.

4.3 Qualitative Evaluation

The success of the proposed method in tracking

small targets and background-cluttered scenes can be at-

tributed to the use of a small target re-search algorithm

and motion estimation algorithm, which can identify

objects for which deep learning does not work. More-

over, the proposed method demonstrates robustness and

effectiveness in dealing with object drift, especially in

In this section, we evaluate the performance of our pro-

posed method in a variety of complex scenarios, includ-

ing small objects, scale variation, fast motion, occlusion,

and background clutter. The results of the proposed 

method are presented in Fig. 6, which illustrates its abil-

ity to track objects effectively and stably in challenging 

scenarios.

occlusion or when the object is out of sight.

Overall, the results obtained in our work highlight

the potential of the proposed method in addressing

Table 3 Ablation study on different components.

Augmentation Motion estimation Re-search Score
56.37

✓ 57.51
✓ ✓ 61.34

✓ 60.35
✓ ✓ 61.60
✓ ✓ ✓ 65.02

the challenges of drone tracking in complicated scenar-

ios. The combination of a target re-search algorithm,

motion estimation algorithm, and deep network-based

approaches has enabled the proposed method to achieve

high levels of accuracy and stability in tracking small

objects, even in challenging situations.

4.4 Ablation Study

In order to assess the individual effectiveness of each

module in the proposed method, we conduct an ab-
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Table 4lation experiment using the test set of the Anti-UAV 

competition [19]. The evaluation metric employed in 

the experiment remained consistent with the official 

metric of the competition. The baseline method used 

for comparison is the base Keep-Track [18]. The results 

of the ablation experiment are presented in Table 3.

This evaluation approach allows us to investigate the 

impact of each module on the overall performance of the 

proposed method, thereby providing a more thorough 

understanding of the efficacy of the proposed method.

Data augmentation. To improve the ability of the 

proposed model to accurately track UAV objects in 

infrared modality, we retrain the proposed model us-

ing the training set of the Anti-UAV Competition. In 

addition, we employ data augmentation techniques to 

further improve the model performance. The resulting 

model achieves a 3.98% improvement in performance 

compared to the baseline method. These results demon-

strate that such a simple operational adjustment can 

have a significant impact on the generalization ability 

of the model.

Motion estimation. Building on the data augmenta-

tion techniques used in previous experiments, we add 

a motion estimation module to the proposed method 

to effectively address occlusion and background clutter 

issues. The results in Table 2 demonstrate that the incor-

poration of this module improves the performance of the 

method by 1.25% compared to the data-augmentation 

baseline, while the version without data augmentation 

exhibited a 1.14% improvement compared to the base-

line without data augmentation. To provide further 

insight into the impact of this module, Fig. 7 illustrates 

a scenario in which the object and the background are 

difficult to distinguish, and the network is faced with a 

challenging tracking task. When the module is not uti-

lized, the tracking performance deteriorates significantly.

However, when the motion estimation module is inte-

grated into the method, stable tracking is maintained 

despite challenging scenarios. These results highlight the 

efficacy of the motion estimation module in improving 

the tracking performance of the proposed method in 

complex tracking scenarios.

Re-search and update. We introduce a target re-

search module to further enhance the tracking perfor-

mance. The experiments demonstrate that the network 

with the inclusion of this module experienced an im-

provement of 3.42% compared to when the module was 

not included. Additionally, the network that incorpo-

rated this module but did not include data augmentation 

also showed an improvement of 3.83% compared to the 

network that did not incorporate this module or data 

augmentation. Notably, this module proved particularly 

effective in complex scenarios where the target is small

Comparison of different thresholds.

N=10 N=20 N=30
W×H (9×7) 64.24 62.73 62.97

W× H (20×15) 65.02 62.86 63.11
W× H (30×20) 62.45 61.82 62.09

and the movement is complex, as demonstrated in Fig. 8.

In such scenarios, the target re-search module success-

fully detect and tracks the moving target, resulting in 

stable and accurate tracking.

4.5 Parameter Analysis

In this section, we perform a parameter analysis experi-

ment, which is mainly divided into two parts. The first

part focuses on the parameter analysis of the differen-

tiation threshold for large and small targets, while the

second part investigates the enhancement of tracking

performance by our method on the two classes of targets

after differentiating between large and small ones.

The parameter analysis for large and small targets 

primarily encompasses two sets of parameters namely 

the determination range W×H for small targets and 

the candidate target contour threshold N. The specific 

experimental results are shown in Table 4. Since most 

drone targets are rectangular, W and H are set to the 

proportions of a rectangle, and N is taken as 10, 20, 30;

Targets with a perimeter larger than N threshold are 

considered as candidate targets, while those below are
considered as noise. The experiments show that when

W×H is set to 20×15, and N is 10, tracking achieves

the best effect. This is because if W and H are set too

small, some small targets will be misclassified as large

targets, and these targets are difficult to feature extract

through deep neural networks and cannot be relocated

through global matching for large targets, leading to

tracking failure. Conversely, setting W and H too large

can misclassify some originally stable large targets as

small targets, thereby disturbing the originally stable

tracking.

On the basis of differentiating between large and 

small targets, we conduct experiments to enhance the 

tracking performance of both types of targets, as shown 

in Table 5. Experimental results demonstrate significant 

improvements in tracking small targets using our pro-

posed method. With the combined effects of the motion 

estimation and target re-search and update modules,

the tracking effectiveness for small targets was increased 

by 10.51%.
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Tracking result Ground truth

Without motion estimation

With motion estimation

Fig. 7 Ablation study of motion estimation module.

Tracking result Ground truth

Without object re-search

With object re-search

Fig. 8 Ablation study of object re-search and update module.

Table 5 Comparison of tracking performance on different
targets.

Large Small All
baseline 60.39 44.07 56.37
MAMC 68.38 55.48 65.02

5 Conclusion

In this paper, we proposed a novel infrared object tracker

named MAMC, which effectively addresses various com-

plex issues encountered in small object tracking. First,

we augmented the dataset using data augmentation

techniques to improve model generalization. We then

introduced a motion estimation module to deal with

occlusion and background clutter, and an object re-

search module to deal with complex motions and object

drifts. We validated the effectiveness of the proposed

algorithm on the Anti-UAV and LSOTB-TIR dataset,

achieving state-of-the-art performance. While our work

has achieved good results in the current test set, drone

tracking is a task of great practical value, and working

solely on limited datasets is insufficient.
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