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Abstract
Monocular image based 3D object retrieval is a novel and challenging research topic in the field of 3D object retrieval. Given a
RGB image captured in real world, it aims to search for relevant 3D objects from a dataset. To advance this promising research,
we organize this SHREC track and build the first monocular image based 3D object retrieval benchmark by collecting 2D
images from ImageNet and 3D objects from popular 3D datasets such as NTU, PSB, ModelNet40 and ShapeNet. The benchmark
contains classified 21,000 2D images and 7,690 3D objects of 21 categories. This track attracted 9 groups from 4 countries and
the submission of 20 runs. To have a comprehensive comparison, 7 commonly-used retrieval performance metrics have been
used to evaluate their retrieval performance. We wish this publicly available benchmark, comparative evaluation results and
corresponding evaluation code, will further enrich and boost the research of monocular image based 3D object retrieval and
its applications.

Categories and Subject Descriptors (according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—Information
Search and Retrieval

1. Introduction

As the rapid development of 3D technologies for modeling, recon-
struction, printing an so on have produced increasing number of
3D models, 3D model retrieval becomes more and more importan-
t. Monocular image based 3D object retrieval (MI3DOR) aims to
retrieve 3D object using a RGB image captured in real world. It
helps users to get access to valuable 3D models by easily available
2D images, which is significant and promising.

However, few work focuses on MI3DOR with the following two
reasons: (1) lack of related retrieval benchmarks, and (2) the gap
between two modalities makes the problem extremely challenging.

† Track organizer. ∗ Corresponding Author Email: anan0422@gmail.com
and weizhinie@tju.edu.cn.

The fundamental challenge in cross-modal retrieval lies in the
heterogeneity of different modalities of data. In recent years,
some efforts have been made to bridge the gap between dif-
ferent modalities and different domains, such as text-to-image
retrieval and image-to-image domain adaption. SHREC18’IBR
[ARYL∗18] aims to search for relevant 3D scenes with 2D scene
image, which is also a cross-modal retrieval task. Compared with
SHREC18’IBR, this track has the following different aspects: (1)
Different from collecting the scene images and models, we focus on
individual object, which is useful for many applications related to
3D objects. (2) We contribute a dataset with more data and more
categories, which makes the retrieval task based on this dataset
more convincing.

In summary, the objective of this track is to retrieve 3D objects
using 2D monocular image. Our collection is composed of 21,000
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2D images and 7,690 3D objects of 21 categories. 9 groups partic-
ipated in this track and 20 runs were submitted. The evaluation re-
sults show a promising scenario about monocular image based 3D
model retrieval methods, and reveal interesting insights in dealing
with cross-modal data. The dataset will be made publicly available
so as to enable rapid progress based on this promising technology.

2. MI3DOR Benchmark

2.1. Dataset and Queries

Our MI3DOR benchmark includes 21 classes for both 2D images
and 3D objects. Table 1 shows the number of samples in training
dataset and testing dataset. The exact number of images and ob-
jects for each class is shown in Fig. 1. We randomly selected 50%
samples per class as the training set and used the remaining data
for testing. We follow [SMKLM15] to render the 3D object (.OBJ)
and get 12 views for each 3D object.

Table 1: Training and testing datasets of our MI3DOR benchmark.

Benchmark Image Model View
Train 10500 3842 3842×12=46104
Test 10500 3848 3848×12=46176
Total 21000 7690 7690×12=92280

Figure 1: Data distribution

The 2D object-centered image dataset contains uniformly clas-
sified 21,000 images of 21 categories, which are all collected from
ImageNet [DDS∗09]. Figure 2 shows one example for each class
in monocular image dataset.

Airplane Bed Bicycle Bookshelf Camera Car Chair

Flower pot Guitar Keyboard Knife Monitor Motorcycle Pistol

Plant Radio Rifle Stairs Tent Vase Wardrobe

Figure 2: 2D object-centered image examples in MI3DOR dataset.

The objects in 3D object dataset are selected from the popular 3D
dataset NTU [CTSO03], PSB [SMKF04], ModelNet40 [WSK∗15]
and ShapeNet [SYS∗17]. Figure 3 shows one example for each
class in 3D object dataset. Besides 3D object (.OBJ) file, we render
3D model and get 12 views for each model.

Airplane Bed Bicycle Bookshelf Camera Car Chair

Flower pot Guitar Keyboard Knife Monitor Motorcycle Pistol

Plant Radio Rifle Stairs Tent Vase Wardrobe

Figure 3: 3D object examples in MI3DOR dataset.

2.2. Evaluation

We adopt the evaluation criteria that have been widely employed in
existing 3D object retrieval work, which are Precision-Recall (PR)
diagram, Nearest Neighbor (NN), First Tier (FT), Second Tier (ST),
F-Measure (F), Discounted Cumulated Gain (DCG) and Average
Normalized Modified Retrieval Rank (ANMRR). A lower ANMR-
R value indicates a better performance.

3. Participants

9 groups participated in this track and 20 runs were submitted. The
participant details and the corresponding contributors are shows as
follows.

1. RNF-MVCVR submitted by HCMUS Team (Ngoc-Minh Bui,
Trong-Le Do, Mai-Khiem Tran, Trung-Hieu Hoang, Minh-Triet
Tran from University of Science, VNU-HCM and Vinh-Tiep N-
guyen, Anh-Duc Duong from University of Information Tech-
nology, VNU-HCM).

2. SORMI submitted by MAGUS.ZinG Team (Ao Zhang, Haobin
Guo, Tongwei Ren and Gangshan Wu from Nanjing University).

3. RNFETL submitted by Z. Liu, E.L. Doubrovski, J.M.P. Ger-
aedts from Delft University of Technology and C.C.L.Wang
from Chinese University of Hong Kong.

4. CLA submitted by HCMUS-Juniors Team. The-Anh Vu-Le,
Huy-Hoang Chung-Nguyen, Gia-Han Diep, Duc-Tuan Luu,
Son-Thanh Tran-Nguyen, Minh-Triet Tran from University of
Science, VNU-HCM and Vinh-Tiep Nguyen from University of
Information Technology, VNU-HCM.

5. MLIS submitted by Caifei Yang, Xing Liu, Shijie Wang from
school of software, Dalian University of Technology.

6. ADDA-MVCNN and SRN submitted by Yunchi Cen, Fan
Zhang and Zenian Chen from Beihang University.

7. ALIGN submitted by Hao Zhai and Yichen Li from University
of Science and Technology Beijing.

8. JGSA submitted by Yunsheng Ma and Sicheng Zhao from UC
Berkeley.

9. JAN submitted by Jie Nie and Meng Yuan from Ocean Univer-
sity of China.
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4. Supervised Methods

4.1. RNF-MVCR, by HCMUS Team

4.1.1. 2D Query Image Classification with ResNet-based
Fusion

For each query image, they use multiple classification models as
follows: First, they use pretrained ResNet-50 [HZRS16] to get the
feature vector. Then they use the feature vectors as inputs for mul-
tiple fully-connected neural networks that have one or two hidden
layers. The number of hidden nodes of each layer is selected be-
tween 64, 100, 128 and 192, respectively. Then they use the major-
ity voting scheme to select the best result from these models.

4.1.2. 3D Target Model Classification with Multi-Views and
Circular ViewRings

They inherite the idea of Multi-view CNN to classify 3D object-
s based on the projection views. Different approaches have been
tried to classify 3D objects based on 12 views that are provided by
organizers and 26 views that participants render.

Figure 4: View-based 3D classification.

Figure 4 illustrates the architecture of this classification mod-
el. For each view, they use pre-trained ResNet-50 model to extract
2048-dimensional feature vector representing that view. Then, they
use these vectors as inputs to a neural network.

Each view feature will be fed to a fully connected layer, whose
weight is shared among views, to produce a 128-dimensional vec-
tor. Then these vectors are fused to form a unique vector to rep-
resent the 3D object. They adopt two different strategies to fuse
the vectors. One approach is to simply concatenate these vectors
to form a single 1536-dimensional vector. The second approach is
to treat the input vectors as a sequence that has topological order
and feed each view feature as an input at a time step to a recurrent
neural network with LSTM cell, then they use the cell state of the
last time step to represent the 3D object.

The output vector of one of these two strategies will be fed to a
fully connected layer to produces a 21-dimensional output vector,
where each element represent a class probability.

They also applied the method [PTL∗18] in which each 3D tar-
get object is represented by multiple Circular View-rings, and tried
different numbers of rings, ranging from 1 to 7 rings.

4.2. SORMI, by MAGUS.ZinG Team

Considering the high appearance diversity within each class of both
monocular images and 3D models, this method proposes a Seman-
tic similarity based 3d Object Retrieval from Monocular Image
(SORMI) method. Figure 5 shows the framework of the method.
They first extract the semantic representation of the query image

and the retrieved 3D models respectively, and measure their se-
mantic similarities to sort the 3D models. Specifically, they uti-
lize Resnet-50 [HZRS16] or InceptionNet-v4 [SIVA17] to extract
the semantic representation from monocular images, and MVCN-
N [SMKLM15] or GVCNN [FZZ∗18] to extract the semantic rep-
resentation from the 2D rendered views of 3D models. In seman-
tic similarity measurement, they select the top 5 or 6 classes from
the classeme vectors of both monocular images and 3D models to
generate their semantic representations, and measure the similarity
with cosine distance or vector multiplication.

Figure 5: The framework of the proposed method.

As shown in Table 2, they provide five submissions with dif-
ferent image classification networks, 3D model classification net-
works and similarity measurement strategies. In all the submission-
s, they augmented the 2D rendered views of 3D models by captur-
ing their new views, because of the lack of views in some specif-
ic classes such as bicycle and tent. After view augmentation, each
class of 3D models has 250 view groups, and each view group con-
tains 12 views.

Table 2: Illustration of the five submssions

Submission Image Classification
Network

3D Model Classification
Network

Similarity
Measurement

SORMI-1

Resnet-50 MVCNN

top5-cos
SORMI-2 top5-mul
SORMI-3 top6-mul
SORMI-4 top5-mul-norm
SORMI-5 InceptionNet-v4 GVCNN top5-mul-norm

They utilize Resnet-50 and MVCNN as the networks for monoc-
ular image classification and 3D model classification, respective-
ly. They also attempt to apply some recently proposed methods,
such as InceptionNet-v4 and GVCNN for semantic representation
extraction. These methods brought in slight improvements in 3D
model classification, but might cause sorting failure sometimes in
their experiments. Hence, they use Resnet-50 and MVCNN in four
submissions and InceptionNet-v4 and GVCNN in one submission.

Additionally, they made attempt on representing monocular im-
ages and 3D models with the outputs of FC layer, and measur-
ing the feature distances with the assistance of adversarial transfer
method. However, the performance of all the attempts was signifi-
cantly worse than the methods based on semantic similarity. Hence,
they do not include such methods in the submissions.

c© 2019 The Author(s)
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4.3. RNFETL, by Z. Liu, E.L. Doubrovski, J.M.P. Geraedts,
and C.C.L.Wang

They propose ResNet-50 Feature Embedding with Triplet Loss
(RNFETL) for MI3DOR task. In this attempt, query images and
rendered views of target 3D objects are all embedded into the same
Euclidean space. The distance between a query image and a 3D
object is measured according to the L2 distances between the image
and the object’s views in the embedded feature space. Multi-layer
neural networks are trained with triplet loss to learn the embedding.

Figure 6: Illustration of RNFETL.

The adopted framework is illustrated in Fig. 6. Each training
triplet contains an anchor monocular image u, a positive view vp,
and a negative view vn. The positive view is rendered with a 3D
model from the same category as the anchor image, while the neg-
ative one is rendered with a model from a different category. After
sampling triplets, images and views are feed into the image network
fu and view network fv respectively. Both networks map an input
data instance to a k-dimensional vector. The networks are trained
to minimize the loss

∑
(u,vp,vn)

[‖ fu(u)− fv(vp) ‖2
2 − ‖ fu(u)− fv(vn) ‖2

2 +α]+ (1)

in which α > 0 enforces a margin between the distance of feature
vectors of different categories.

Instead of training from scratch, the networks fu and fv are both
built on top of a pre-trained network. The ResNet-50 [HZRS16]
trained on ImageNet dataset is used here. After removing the last
softmax layer, ResNet-50 becomes a function fRN that maps da-
ta to 2048-dimensional vectors. Taking advantage of its powerful
data representation ability, fRN(x),x = u,vp,vn are used to train
shallow embedding networks f̃u and f̃v. That is to say, fx(·) =
f̃x( fRN(·)),x = u,v is trained to minimize the loss in Eq. 1.

As there are 21 categories of query images, a classification net-
work is trained to serve as f̃u, of which the softmax output will be
the embedeed feature vector. Thus the value of k will be 21. The
image embedding network f̃u has only one fully-connected layer.
It is trained with cross entropy loss, after which its parameters are
fixed. Only f̃u is trained in the final training stage to minimize Eq.
1. The view embedding network f̃u has two fully-connected layers,
each of which has 512 nodes. Activation functions in both layer-
s are rectifiers. Dropout with 0.5 probability is used in the second
layer. In Eqn. 1, the margin parameter a is set as 0.2.

In the retrieval stage, each query image is represented as a 21-d
feature vector fu(u) and each target 3D model is represented as a

collection of fv(vi), i = 1, · · · ,Nv, in which Nv = 12 is the number
of rendered views for each shape, all of which are released by the
organizers of this track. To measure the distance between the query
image and the target shape, all Nv distances ‖ fu(u)− fv(vi) ‖2 are
collected as a set. The average of the smallest m values is used as
the estimation of the image-to-model distance. The value of m is
picked as 8 by a 5-fold cross-validation on the training set.

4.4. CLA, by HCMUS-Juniors

This approach mainly consists of two classifiers, one is for the 2D
images and the other is for the 3D models. Each classifier can out-
put the probabilities of the input image (or model) belonging to
each of the 21 classes. The ResNet-18 (or ResNet-50) model, pre-
trained on the ImageNet dataset, has been proven to achieve high
results in classification of common objects [HZRS16]. Thus we
choose this model to be our main feature extractor, which yield-
s a 512-dimension (or 2048-dimension) representation vector for
each input image.

4.4.1. 2D image classification

The classification model is a neural network with one hidden layer
comprising of K nodes, with K varies from 100 to 1024. Stochastic
gradient descent is used to minimize the categorical cross entropy
loss function, together with techniques like learning rate scheduling
or early stopping. The output score will be processed by a Softmax
function, resulting in a 21-dimensional probability vector. It should
be noted that some images can be classified into multiple classes
(commonly up to two), with the probability as the deciding factor.
Multiple networks are trained with varying values for K. The con-
cluding probabilities of the image belonging to each of the classes
are the weighted average of all networks’ prediction.

4.4.2. 3D model classification

For 3D model classification, they analyze several approaches (de-
scribed below) to obtain the final reliable labels for each 3D model.

Majority voting. For each 3D model, the 12 3D images captured
from different angles of that model are fed into a Neural Network
with 2 hidden layers. The output prediction of each image is cal-
culated by a Softmax function which results in a vector with 21
elements that respectively represents probability of predicted label-
s. The output label of each image is taken from the element with the
highest probability value. For labeling each object, the label which
has the highest occurrence in the set of twelve view images of that
object is the final label of that object.

Long Short Term Memory. With 12 images taken from differ-
ent angles orbiting the object, it is natural to think of this as a time
series with each angle as a time step. To classify the 3D model,
they build a stacked Long Short Term Memory (LSTM) neural net-
work with 2 LSTM layers. The gates of the first layer consists of
1024 nodes while the gates of the second layer consisting of half
of that number. There is also a DropOut layer for regularization.
The output of the last timestep will be fed into a densely connected
neural network and processed by a Softmax function to produce a
21-dimension vector as probabilities for the models belong to each
class. This neural network is trained with 3842 training data, each
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with 12 time steps, each timestep is a 512-dimension representation
vector (outputted by the ResNet model as stated before).

Data Augmentation using Rotation. As the images are cap-
tured from different but continuously changing views which orbit
in a full circle around the 3D model, the order of the 12 images
can be rotated to create different inputs, increasing the training da-
ta size by 144. They perform the rotation on the input vector with
shape (3848, 1000) to create a vector of (46176, 12, 1000) including
twelve elements with size (12, 12, 1000) each, for every 3D model.
Then, each input will be trained with an LSTM model, examining
varies parameters and layers to get the optimal result; Though, it is
still significantly lower than our non-rotated results.

Commonly misidentified classes. Observing the training data as
well as the validation result, it is clear that the objects of the three
classes vase, flowerpot, and plant are easily mistaken as another.
Our approach on this problem is to separate the objects of these
three classes and label them as one large class. we then build two
classifiers, one to classify the models into 1 of the 18 categories
(the 17 classes except vase, flowerpot, and plant and 1 class for
those three) and the other to classify between the three separated
classes.

4.5. MLIS, by Caifei Yang, Xing Liu and Shijie Wang

This approach uses Metric Learning for cross-domain 3D object
retrieval in the Identical Subspace (MLIS), which try to bridge
the gap between 3D objects and 2D images and learn the feature
representation.

Figure 7: Method Framework.

The method framework is illustrated in Figure 7. This framework
is divided into two parts. The first part (bottom part in the figure) is
the feature learning for 3D objects, which is built upon the frame-
work of MVCNN [SMKLM15]. They use the L2 norm to constrain
the features of 3D objects on a unit hypersphere centered at the ori-
gin and propose a new metric learning loss, named Triple Center
Angular (TCA) loss function. This loss function learns a center
for each class and requires that the angles between features of 3D
objects and centers from the same class relative to the origin are
smaller than those from different classes, such that the features of
3D objects from same class are pulled closer to the corresponding

center and pushed away from the other centers of different classes.
In addition, this loss function requires that the angles of different
class centers are larger relative to the origin, which makes the cen-
ters of different classes far away and increases the discriminability
between different classes of features. They combine the TCA loss
and cross entropy loss to train 3D object feature learning network
and fix the center features of all classes of 3D objects after the joint
loss function convergence.

The second part (top part in the figure) is to construct the rela-
tionship between the features of 2D images and 3D objects. In this
part, they also use the L2 norm to constrain the features of 2D im-
ages to the same hypersphere as the features of 3D objects, which
allows to learn the relationship between the features of 2D images
and 3D objects. Since the distribution between the features of 2D
images and 3D objects is extremely inconsistent, which makes the
loss function difficult to optimize. In order to solve the addressed
problem, they propose the Center Angular (CA) loss function. CA
loss function requires that the angles between 2D images’ features
and fixed center features from the same class of 3D objects relative
to the origin are as small as possible. This loss function only con-
siders the relationship between the features of 2D images and 3D
objects of the same classes, which is convenient for the optimiza-
tion of CA loss function. They combine the CA loss and weakened
cross entropy loss to train the relationship network.

4.6. ADDA-MVCNN, by Yunchi Cen, Fan Zhang and Zenian
Chen

This method starts with learning the shape representations using
two different CNN models. These two independent CNN streams
are used to handle the two kinds of samples respectively, which
is more powerful to extract features from two different domains.
More importantly, they use an adversarial discriminative domain
adaption approach to help solving the cross-domain problem. This
approach couples the two input sources into the same target space,
which allows to compare the similarities of cross-domain features
direcly using a simple distance function.

4.6.1. Learning feature representations for image-based 3D
shape retrieval

Recent deep learning has achieved great success on many computer
vision tasks. With a deep structure, CNN can effectively learn com-
plicated mappings from raw images to the target, which requires
less domain knowledge compared with handcrafted features learn-
ing framework. Since the two input sources have distinctive intrin-
sic properties, we utilize ResNet-50 [HZRS16] pretrained on the
ImageNet [DDS∗09] as the initial network parameters. And MVC-
NN [SMKLM15] framework is adapted as another CNN, which
takes 12 view images of a 3D model as input. The last fully con-
nected layer of both networks are replaced by a 20 dimension em-
bedding vector, and we fine-tune the two CNNs respectively.

4.6.2. Cross-domain matching using ADDA

If the correct mapping in each domain and cross-domain relation-
s are learned, the two different feature domains may be correctly
aligned in the feature space. After the cross domain mapping learn-
ing, matching can be performed cross domain. Fig.8 illustrates their
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method for adversarial discriminative domain adaption. They treat
the 2D images in the real world as the source domain and the 2D
view images of the 3D models as the target domain. The basic idea
of the adversarial learning is to carry on fine-turning the encoder
parts that map the source and target data to the same space through
a domain-adversarial loss. For detail, in the training stage, the en-
coder parts of the ResNet and MVCNN are connected to the same
classifier and discriminator, where the discriminator is responsible
for distinguishing source images from target images, while the en-
coder parts of the ResNet and MVCNN make efforts in fooling the
discriminator and doing the correct classification. The parameters
of the ResNet, MVCNN, discriminator are updated alternately. As
a result, the feature distribution from the source domain and target
domain are close to each other step by step.

Figure 8: Adversarial adaption of the method.

4.7. SRN, by Yunchi Cen, Fan Zhang and Zenian Chen

This method proposes to use a weakly supervised metric learning
method named Siamese Ranking Network (SRN) [BJ05] which
consists of two identical sub-convolutional networks. The goal of
the network is to make the output vectors similar if input pairs are
labled similar, and dissimilar for the input pairs that are labeled as
dissimilar. The output score will directly measure the similarities
between 2D images and 2D view images.

4.7.1. Network Architecture

They adopt ResNet-50 [HZRS16] and MVCNN [SMKLM15] as
the backbone of the Siamese network, and Fig.9 shows the architec-
ture. The features extracted from ResNet and MVCNN are stitched
together and further used to output a score indicating whether the
two inputs belong to the same category or not. The loss function
consists of three parts, two classification losses for each branch
separately and a discriminating loss for the category consistency
of the two inputs. All parameters in the network will be updated
simultaneously for each back-propagation.

Figure 9: Network architecture of the method.

4.8. ALIGN, by Hao Zhai and Yichen Li

Considering the differences between two domains, this method us-
es different neural networks to conduct the basic information ex-
traction individually and uses their fully connect layer output as a
new training set for a teacher network. The teacher network is de-
signed to minimize the output differences when the inputs of two
domains belong to the same class, while maximizing the output d-
ifferences when they belong to different classes.

4.8.1. Pre-train

They use DenseNet-201 to deal with 2D images, while multiple
ResNet-18(s) is used to process 2D views of 3D model. In the train-
ing step, they split the train set as (train: verify = 3: 1). They use
the pretrained parameters† for training.

4.8.2. Cross-domain Train

The design of alignment for cross-domain training is inspired by
[AVT17]. They extract the feature layer (the layer just before the
full-connected layers) as the data of cross-domain training. Be-
fore the teacher net, they introduce two networks for dimension
reduction to 1-dimensional vector. Then the two streams are in-
put to a teacher net with the same structure. Besides the con-
ventional labels’ cross-entropy loss, they additionally employ a
ranking loss function to obtain both aligned and discriminative
representations:∑N

i ∑ j 6=i max{0,∆− ψ(xi,yi) + ψ(xi,y j)}. ∆ is a
hyper-parameter, which is set to 0.02 with several trials. ψ is a co-
sine similarity function, which is ψ(x,y) = x·y√

x2
√

y2
.

5. Unsupervised Methods

There are two teams train the model without using the train set
labels of target domains.

5.1. JGSA, by Yuesheng Ma and Sicheng Zhao

Traditional domain adaption methods consists of two successive
steps: multi-view visual representation and cross-domain distance
learning.

5.1.1. Multi-view visual representation

For the view-based methods, a 3D model is usually represented
by a set of views captured from different directions. To transform
each 3D model into a set of images, Phong reflection model is used
to capture and render multiple views of 3D models. The 12 views
of 3D model are inputted into AlexNet where they share identical
architecture and the same parameters for feature extraction. Then
they take element-wise maximum operation over 12 features into
one, which acts as the final 3D model representation.

† https://download.pytorch.org/models/
resnet18-5c106cde.pth and https://download.pytorch.
org/models/densenet201-c1103571.pth
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5.1.2. Cross-domain distance learning

Following [ZLO17], they learn two coupled projections to map the
source and target data into respective subspaces. After the projec-
tions, 1) the variance of target domain data is maximized to pre-
serve the target domain data properties, 2) the discriminative infor-
mation of source data is preserved to effectively transfer the class
information, 3) both the marginal and conditional distribution di-
vergences between source and target domains are minimized to re-
duce the domain shift statistically, and 4) the divergence of two
projections is constrained to be small to reduce domain shift geo-
metrically.

This method does not require the strong assumption that a u-
nified transformation can reduce the distribution shift while pre-
serving the data properties. Different from subspace centric based
methods, they not only reduce the shift of subspace geometries but
also reduce the distribution shifts of two domains.

5.2. JAN, by Jie Nie and Meng Yuan

They well adapt the work [LZWJ17] by aligning the multiple layers
distribution to address monocular image-based 3D model retrieval
problem, where the query is a 2D monocular real image and the tar-
get is 3D object models. Those data come from different datasets
with diverse data distribution and have different modalities. They
address this task by rendering the 3D object information with mul-
tiple views.

5.2.1. Methodology

Given the source domain Ds = {(xs
i ,y

s
i )}

ns
i=1 of ns labeled samples

and a target domain Dt =
{

xt
j
}nt

j=1 of nt unlabeled samples. The
source domain and target domain are from different distributions
S(X s,Y s) 6= T (X t ,Y t). They design a new network to reduce the
shift in the joint distributions across domains by minimizing the
source risk and domain discrepancy. The classic CNN classifier er-
ror is defined as follow:

min
f

1
n

n

∑
i=1

J( f (xi),yi)) (2)

where J(·, ·) is the cross-entropy loss function.

Based on the quantification study of [YCBL14], the convolu-
tioinal layers can learn transferable generic features across domain-
s. Considering the joint maximum mean discrepancy, they can in-
tegrate it over the domain-specific layers ζ into the CNN classifier
error, the joint distributions are matched end-to-end with network
training:

min
f

1
ns

ns

∑
i=1

J( f (xi),yi))+λD̂ζ(S,T,)) (3)

where λ> 0 is a tradeoff parameter of the JMMD penalty and the
D̂ζ(S,T ) is computed as the squared distance between the empirical
kernel mean embeddings.

5.2.2. Experiment setting

They use the Alexnet [SZ14] architecture finetuned on the Ima-
genet as the basic models and they utilize the two fully connection
layers fc6 and fc7 as the layer set L to formally reduces the shifts
in the joint distributions across domains. They use mini-batch s-
tochastic gradient descent (SGD) with momentum of 0.9 and the
learning rate is 0.001.

6. Results

Table 3: Evaluation Score of Supervised Methods.(Red indicates
best performance and cyan blue indicates second-best perfor-
mance.)

Method NN FT ST F DCG ANM AUC
RNF-MVCVR-1 0.974 0.921 0.928 0.202 0.935 0.069 0.855
RNF-MVCVR-2 0.974 0.921 0.937 0.200 0.935 0.069 0.850
RNF-MVCVR-3 0.974 0.922 0.937 0.200 0.936 0.069 0.850
RNF-MVCVR-4 0.974 0.918 0.937 0.200 0.933 0.072 0.846

SORMI-1 0.929 0.918 0.959 0.184 0.924 0.078 0.809
SORMI-2 0.945 0.917 0.959 0.186 0.925 0.078 0.812
SORMI-3 0.945 0.917 0.959 0.186 0.925 0.078 0.812
SORMI-4 0.945 0.907 0.936 0.180 0.913 0.091 0.782
SORMI-5 0.947 0.922 0.964 0.186 0.929 0.074 0.813
RNFETL 0.970 0.911 0.974 0.189 0.924 0.079 0.832

CLA-1 0.952 0.887 0.893 0.203 0.903 0.103 0.827
CLA-2 0.952 0.887 0.893 0.203 0.904 0.103 0.827
CLA-3 0.952 0.887 0.895 0.202 0.903 0.103 0.826
CLA-4 0.952 0.887 0.896 0.202 0.904 0.103 0.826
MLIS 0.942 0.910 0.963 0.186 0.919 0.084 0.815

ADDA-MVCNN 0.875 0.863 0.878 0.178 0.876 0.130 0.727
SRN 0.894 0.867 0.878 0.182 0.882 0.124 0.739

ALIGN 0.642 0.695 0.801 0.138 0.695 0.300 0.556

Table 4: Evaluation Score of Unsupervised Methods

Method NN FT ST F DCG ANM AUC
JGSA 0.681 0.611 0.751 0.135 0.631 0.377 0.515
JAN 0.446 0.343 0.495 0.085 0.364 0.647 0.241

In this section, we perform a comparative evaluation of the pro-
posed supervised methods and unsupervised methods in terms of
PR-Curve, NN, FT, ST, F-Measure, DCG, ANMRR and AUC (the
area under PR-curve). The evaluation scores of supervised methods
and unsupervised methods are shown in Table 3 and 4 respectively.
PR-curve of supervised and unsupervised methods is shown in Fig.
3 and 4 respectively.

The results have shown monocular image based 3D object re-
trieval performance using multiple views of 3D model from all the
participants. From the results, we can have the following observa-
tions.

• All the methods use the multiple views to represent 3D models,
which leverage the huge gap between 2D images and 3D point
object and translate the cross modality retrieval to cross domain
learning.
• Most of the supervised methods are classifier-based adaptation

and get the excellent performance by joining the retrieval task
with classification. By training the classifiers of two domains,
they apply the trained model to predict the pseudo labels of test
monocular images and 3D models and use the label to design the
similarity measure.

c© 2019 The Author(s)
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• The unsupervised cross domain learning (without target labels)
get lower performance comparing to the supervised methods. It
is still a big challenge for real application.
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Figure 10: PR-Curve of supervised methods
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Figure 11: PR-Curve of unsupervised methods

7. Conclusion

In conclusion, this track has attracted research attention on 3D ob-
ject retrieval using multimodal views. We have 9 groups who have
successfully participated in the track and contributed 20 runs. This
track serves as a platform to solicit existing monocular based 3D
object retrieval methods. Also all the participated methods have
achieved improved performance, the task is still challenging and the
results are far from satisfactory and practical applications. There
are still a long way for monocular image based 3D object retrieval.
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