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Abstract Object proposal aims to locate category-independent objects in
a given image with a limited number of object candidates indicated by
bounding boxes, which can be served as a fundamental of various multimedia
applications. Current evaluation criteria based on recall cannot reveal the real
abilities of different object proposal methods in objectness measurement. In
this paper, we propose a novel object proposal evaluation criterion instead
of recall, named objectness measurement ability (OMA). We first analyze the
probability to hit an object by non-repetitive random sampling (HPRS), and
provide an algorithm for calculating HPRS efficiently. Based on HPRS, we
define OMA and extend three commonly used object proposal evaluation
criteria by replacing recall with OMA. We evaluated six typical object proposal
methods using recall based criteria and OMA based criteria on the test data of
PASCAL VOC 2007 and PASCAL VOC 2012. The experimental results show
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that OMA based criteria can provide more stable evaluation results than recall
based ones in revealing objectness measurement ability.

Keywords Object proposal evaluation · objectness measurement ability · hit
probability of random sampling

1 Introduction

Object proposal aims to locate category-independent objects in a given image
with a limited number of object candidates indicated by bounding boxes [1].
Since the number of object candidates generated by object proposal is much
less than the number of those generated by sliding window [2], object proposal
can be served as a fundamental of many multimedia applications, such as
object classification [3–6], detection [7–11], segmentation [12,13], retrieval [14–
17], tracking [18–20], action recognition [21–23] and image annotation [24–27].
The research on object proposal is based on a consensus that all objects
belonging to different categories share some common properties to differ
from background, which is named objectness. High ability in objectness
measurement is crucial to an effective object proposal method. Two paradigms
are mainly used in current object proposal methods: window scoring and
grouping [28,29]. Window scoring based methods first sample a lot of bounding
boxes in a given image, and select the ones with the highest objectness scores
as object candidates [30, 31]; while grouping based methods over-segment an
image into amounts of segments, group these segments with objectness ranking
and use the bounding boxes of the grouping results as object candidates [32,33].

Figure 1 shows an example of object proposal, in which red bounding boxes
denote manually labelled objects in ground truth, green and blue bounding
boxes denote object candidates generated by object proposal. In object
proposal evaluation, intersection over union (IoU) is used to judge whether
an object in ground truth is located accurately by an object candidate. If
their IoU is larger than a predefined threshold, we consider that the candidate
locates the object successfully, named hit ; otherwise, we consider that the
candidate fails in locating the object, named miss. As shown in Fig. 1, the
candidates denoted by green bounding boxes hit the corresponding objects,
while the blue ones miss all the objects.

To compare the performance of different methods, object proposal eval-
uation is conducted on datasets consisted of numerous images with various
objects. Each object proposal method is allowed to provide a certain number
of candidates on each given image. Recall on an image is calculated as the
proportion of hit objects under the predefined IoU in all manually labelled
objects in ground truth on the image, and the mean value of recall values on
all images is treated as a criterion in object proposal evaluation. Obviously,
recall is influenced by the values of the predefined candidate number and IoU.
More candidates and lower IoU benefit to obtain higher recall. Hence, recall
is usually evaluated versus candidate number or IoU. Figure 2 shows three
commonly used criteria in current object proposal evaluation, i.e., recall vs.
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object in ground truth hit candidate  miss candidate

Fig. 1: An example of object proposal. Red, green and blue bounding boxes denote manually
labelled objects in ground truth, object candidates hit one object and object candidates miss
all the objects, respectively.

(a) (b) (c)

Fig. 2: Examples of commonly used criteria in object proposal evaluation. (a) Recall vs.
candidate number under a certain IoU. (b) Average recall vs. candidate number. (c) Recall
vs. IoU under a certain candidate number. In all the examples, method A (red) outperforms
method B (blue).

candidate number under a certain IoU, average recall vs. candidate number,
and recall vs. IoU under a certain candidate number. The details of these
criteria will be presented in Section 2.

Although these recall based criteria can evaluate the effect of object
proposal methods in the way that how many objects are hit by the provided
candidates, they are easily influenced by some irrelevant factors to objectness,
such as candidate number. A simple fact is that every object in a given
image can be hit even with non-repetitive random sampling if sufficient
candidates are provided, because the number of possible bounding boxes
in an image is finite. Besides, other irrelevant factors to objectness may
also influence the evaluation results on recall based criteria, including object
position and size. Institutively, an object with larger size and near to image
center is easier to hit than that with small size and at image corner. It means
that an object proposal method may obtain quite unstable performance on
recall based criteria, even only the sizes or positions of objects are changed.
The evaluation results in simple situations, large object sizes and sufficient
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candidate numbers may mislead the readers about the effects of the evaluated
object proposal methods. An extreme circumstance is that some methods may
obtain acceptable performances on recall based criteria even they are worse
than random sampling, i.e., they adopt incorrect objectness measurement
strategies. Several examples are shown in Section 5. Hence, we can only
compare the relative effects of different methods using recall based criteria,
but not reveal their real performance on objectness measurement stably. It
works against the exploration of better features of objectness measurement
and improves the understanding of common properties of various objects.

To tackle the above problem, we propose a novel object proposal evaluation
criterion instead of recall, named objectness measurement ability (OMA) .
We first analyze the probability to hit an object by non-repetitive random
sampling (HPRS), and provide an algorithm of efficient hit candidates
calculation for HPRS. Next, we define OMA based on HPRS, and extend
three commonly used object proposal evaluation criteria by replacing recall
with OMA. Finally, we compare the evaluation results of several typical object
proposal methods using current recall based criteria and our OMA based
criteria on the test data of PASCAL VOC 2007 and PASCAL VOC 2012.
The experimental results show that our proposed criteria can provide more
stable evaluation results to reveal objectness measurement abilities of different
methods effectively.

Our contributions mainly include:

– We analyze HPRS in object proposal for OMA definition, and present an
efficient algorithm for hit candidates counting in HPRS calculation.

– We propose a new OMA criterion instead of recall in object proposal
evaluation, and extend current commonly used criteria based on OMA.

– We validate our proposed criteria by evaluating state-of-the-art object
proposal methods on two datasets, which are superior to current criteria
in evaluating objectness measurement abilities of different methods.

2 Object proposal evaluation criteria based on recall

IoU is a criterion used to determine whether an object candidate hits or misses
an object in ground truth in object proposal evaluation. It is calculated as the
ratio of the area of their intersection to that of their union:

IoU =
Sc ∩ So
Sc ∪ So

=
SI

Sc + So − SI
, (1)

where Sc and So denote the areas of the candidate and the object, respectively;
SI denotes the area of their intersection. If the IoU is not less than a predefined
threshold τ , we consider that the candidate hits the object; otherwise, we
consider that the candidate misses the object.

By counting the ratio of hit objects to all objects in an image, we can
calculate the recall on the image. The mean value of recall values on all the
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images in an evaluation dataset is used to represent the performance of object
proposal on this dataset:

recall =
1

Nimg

Nimg∑
i=1

|Hi|
|Oi|

, (2)

where Hi and Oi are the sets of hit objects and all objects on the ith image,
respectively;Nimg is the number of images in the evaluation dataset; |.| denotes
the set cardinality.

To a specific object proposal method, recall usually increases along with
candidate number under a certain IoU, i.e., more candidates proposed on
each image helps to achieve higher recall. Hence, the relationship between
recall and candidate number under a certain IoU is used to illustrate object
proposal performance. Figure 2(a) shows an example of recall vs. candidate
number criterion, in which method A outperforms method B because method
A achieves higher recall than method B under the same candidate number and
requires less candidates to achieve the same recall.

To evaluate the performance under different IoUs comprehensively, average
recall (AR) is proposed by averaging the recall values under the IoUs between
0.5 and 1 [28]:

AR = 2

∫ 1

0.5

recall(ϕ)dϕ

=
1

NIoU

NIoU∑
k=1

recall

(
0.5 +

0.5k

NIoU

)
,

(3)

where recall(ϕ) denotes the recall value under IoU equals ϕ; NIoU is the
number of IoUs, which divides the value range [0.5, 1] into NIoU uniform
intervals. Figure 2(b) shows an example of average recall vs. candidate number.
Similar to Fig. 2(a), method A outperforms method B because method A
achieves higher average recall than method B under the same candidate
number and requires less candidates to achieve the same average recall.

The relationship between recall and IoU under a certain candidate number
is also used to illustrate the performance of different methods in object
proposal evaluation. As IoU stands for the accuracy requirement in object
localization, recall usually decreases when IoU increases. Figure 2(c) shows an
example of recall vs. IoU. We can see that method A outperforms method B,
because method A achieves higher recall than method B under the same IoU.

The above three criteria are commonly used in object proposal evalua-
tion [28,30,31,34]. Because the curve of one method may be not always above
that of another, some additional criteria are used to compare the performance
of different methods, such as area under the curve [35]. However, all these
criteria are based on recall, which prevents them from evaluating different
methods on their real abilities of objectness measurement.
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Fig. 3: An example of the coordinate range of bottom-left corner Ωmin (denoted by the
region with blue boundary) and that of top-right corner Ωmax (denoted by the region with
red boundary) of all hit candidates to object o. (a) and (b) show that Ωmin and Ωmax are
obtained when the top-right corner and the bottom-left corner of candidate c have the same
coordinates to those of object o, respectively. The regions with boundaries in different colors
denote the corresponding coordinate sets of all possible bottom-left (or top-right) corners of
c when the top-right (or bottom-left) corner of c is in the points denoted in the same colors.

3 Hit probability of non-repetitive random sampling

To evaluate OMA of an object object proposal method, we first calculate HPRS
without considering objectness measurement and treat it as the baseline in
object proposal evaluation. Assume W and H are the width and the height
of a given image, o is an object in the image with the bottom-left corner
(xomin, y

o
min) and the top-right corner (xomax, y

o
max), and w and h are the width

and the height of object o, which equal to xomax − xomin and yomax − yomin,
respectively (see Fig. 3(a)). We count the numbers of possible candidates by
non-repetitive random sampling and those hitting o, and calculate the HPRS
of o based on them.

3.1 Number of Possible Candidates

Each object candidate can be identified by the coordinates of its bottom-
left corner (xcmin, y

c
min) and its top-right corner (xcmax, y

c
max), satisfying 1 ≤

xcmin < xcmax ≤ W and 1 ≤ ycmin < ycmax ≤ H. Hence, the total number of
possible candidates Ntol can be calculated as:

Ntol = C2
W ∗ C2

H =
1

4
W (W − 1)H(H − 1), (4)

where C2
W and C2

H denote the combinations of (xcmin, x
c
max) and (ycmin, y

c
max),

respectively.
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(c) (d)

object in ground truth
original candidate 

auxiliary candidate 

candidate with the maximum IoU 

Fig. 4: Examples of enlarging IoU between candidate c with the given bottom-left corner
and object o by moving the top-left corner of c to the position of the top-left corner of o.
Blue box denotes the original candidate, red box denotes the candidate with the maximum
IoU after moving its top-left corner to the position of the top-left corner of o, and green box
denotes auxiliary candidate for understanding.

3.2 Number of Hit Candidates

A simple solution for counting the number of candidates hitting object o is to
traverse all possible candidates and judge whether their IoU to o are larger than
the predefined threshold. However, it is time consuming because the number of
possible candidates is much larger than that of the hit ones. Here, we propose
a new algorithm for calculating the number of hit candidates efficiently.

Since each candidate is identified by the coordinates of its bottom-left
corner and top-right corner, we first estimate the coordinate range of bottom-
left corner of all hit candidates. To a given coordinate of its bottom-left corner,
candidate c has the largest IoU if its top-right corner has the same coordinate
to that of object o. Figure 4 shows the examples when the bottom-left corner
of c is inside o and the top-right corner has different positions. We can see
that the IoU between c and o is enlarged in all situations when moving the
top-left corner of c to that of o, i.e., changing the blue box to the red one
(green box denotes a auxiliary one for understanding). The same conclusion
can be obtained in the cases of different bottom-left corner’s positions of c. In
other words, to a bottom-left corner, all candidates identified by it and any
top-left corner will miss o if the one identified by it and the top-right corner
of o has smaller IoU than the predefined threshold. Hence, we can estimate
the coordinate range of bottom-left corner of all hit candidates as the set of
all valid bottom-left corner’s coordinates when the top-right corner of c has
the same coordinate to that of object o. Figure 3(a) shows an example of the
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coordinate range of bottom-left corner of all hit candidates (denoted by the
region with blue boundary). Based on Eq. (1), we can represent the coordinate
range of bottom-left corner of all hit candidates Ωmin as follows:

Ωmin =Ω1
min ∪Ω2

min,

Ω1
min =

{
xomin − w(

1

τ
− 1) ≤ xcmin ≤ xomin,

yomin + h− wh

τ(w − xcmin)
≤ ycmin

≤ yomin + h− wh

xcmin + w
τ

}
,

Ω2
min =

{
xomin ≤ xcmin ≤ xomin + w(1− τ),

yomin +
wh

w − xcmin
− h

τ
≤ ycmin

≤ yomin + h− τwh

w − xcmin

}
,

(5)

where w and h are the width and height of object o, respectively; τ is the
predefined IoU.

To each coordinate inΩmin, we estimate its corresponding coordinate range
of top-right corner of all hit candidates. Similarly, the coordinate range of the
top-right corner of all hit candidates Ωmax can be estimated as the set of
all valid top-right corner’s coordinates when the bottom-left corner of c has
the same coordinate to that of object o. Figure 3(b) shows an example of
the coordinate range of top-right corner of all hit candidates (denoted by the
region with red boundary). Based on Eq. (1) and (5), we can calculate Ωmax
as follows:

Ωmax =Ω1
max ∪Ω2

max,

Ω1
max =

{
xomax − w(1− τ) ≤ xcmax ≤ xomax,

yomax − h−
τwh

xomax − xcmax − w
≤ ycmax

≤ yomax +
h

τ
+

wh

xomax − xcmax − w

}
,

Ω2
max =

{
xomax ≤ xcmax ≤ xomax + w(

1

τ
− 1),

yomax +
wh

xomax − xcmax + w
τ

− h ≤ ycmax

≤ yomax −
wh

τ(xomax − xcmax − w)
− h
}
,

(6)

where w, h and τ are defined as Eq. (5).
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Algorithm 1 Hit Candidates Counting Algorithm
Input: image width W and height H, predefined IoU τ , object o with bottom-left corner
(xomin, y

o
min) and top-right corner (xomax, y

o
max)

Output: number of hit candidates Nhit

Initialize: Nhit = 0
Compute Ωmin using Eq. (5)
Compute Ωmax using Eq. (6)
for (xcmin, y

c
min) ∈ Ωmin AND xcmin ≥ 1 AND ycmin ≥ 1 do

for (xcmax, y
c
max) ∈ Ωmax AND xcmax ≤W AND ycmax ≤ H do

Generate a candidate c with (xcmin, y
c
min, x

c
max, y

c
max)

Compute IoU between c and o using Eq. (1)
if IoU ≥ τ then

Nhit = Nhit + 1
end if

end for
end for

Based on Ωmin and Ωmax, we can count the number of hit candidates
to object o. Algorithm 1 presents the pseudocodes, in which we consider the
situations that Ωmin and Ωmax are partly beyond image boundary.

3.3 HPRS Calculation

Based on the numbers of possible candidates in a given image and hit
candidates to object o, we calculate the HPRS of o as follows:

HPRS(o, k) = 1−
CkNtol−Nhit

CkNtol

, (7)

where k is the number of candidates generated by non-repetitive random
sampling; HPRS(o, k) denotes the hit probability of o with k randomly
sampled candidates, i.e., the probability that o is hit at least once by k
randomly sampled candidates; Ntol and Nhit are the numbers of possible
candidates in the image and hit candidates to o, which are calculated by
Eq. (4) and Algorithm 1, respectively; C denotes combination operation.

4 Object proposal evaluation criteria based on OMA

We define the OMA of an object proposal method on a given dataset by
removing its HPRS from its recall. Based on Eq. (2) and (7), we calculate
OMA as follows:

OMA =
1

Nimg

Nimg∑
i=1

1

|Oi|

|Hi| −
|Oi|∑
i=1

HPRS
(
oij , k

) , (8)

where Nimg is the number of images in the evaluation dataset; Hi and Oi
are the sets of hit objects and all objects on the ith image, respectively; oij
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is the jth object in Oi; k denotes the number of candidates provided on each
image; |.| denotes the set cardinality. Based on OMA defined in Eq. (8), we can
extend the criteria of recall vs. candidate number, recall vs. IoU to OMA vs.
candidate number and OMA vs. IoU, respectively.

To evaluate the OMA values under different IoUs comprehensively, we
define average OMA (AO) by referring average recall in Eq. (3):

AO = 2

∫ 1

0.5

OMA(ϕ)dϕ

=
1

NIoU

NIoU∑
k=1

OMA

(
0.5 +

0.5k

NIoU

)
,

(9)

where OMA(ϕ) denotes the OMA value under IoU equals ϕ; NIoU is the
number of IoUs, which divides the value range [0.5, 1] into NIoU uniform
intervals. Based on Eq. (9), we can extend the criterion of average recall vs.
candidate number to average OMA vs. candidate number.

5 Experiments

5.1 Datasets and Experiment Settings

We validated the proposed criteria on two datasets: PASCAL VOC 2007 test
data (hereinafter referred to as “VOC 2007”) [36] and PASCAL VOC 2012
test data (hereinafter referred to as “VOC 2012”) [37]. VOC 2007 contains
4,952 images annotated with 20 object classes. The total number of annotated
objects is 16,488 and 3.33 objects are on each image in average. VOC 2012
contains 16,135 images, in which 5,138 images are annotated with the same 20
object classes to VOC 2007. The total number of annotated objects is 7,330
and 1.43 objects are on each image in average.

All the experiments were conducted on a computer with 2.9GHz Intel Core
i5 CPU and 8GB memory. We apply the default settings of author suggestions
for all the object proposal methods in our experiments.

5.2 Efficiency of Hit Candidates Calculation

We validate the efficiency of Algorithm 1 in calculating the number of hit
candidates. To illustrate our performance, we use a baseline Exhaustion for
comparison, which traverses all the Ntol possible candidates in Eq. (4). Table 1
shows the time costs of hit candidates calculation using Exhaustion and
Algorithm 1 on VOC 2007 and VOC 2012. We can see that Algorithm 1
reduces over 95% time cost of hit candidates calculation than Exhaustion.
Moreover, the efficiency improvement of Algorithm 1 is more obvious when
requiring higher IoU, because both Ωmin and Ωmax are smaller when IoU is
higher.
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Table 1: Efficiency comparison between Algorithm 1 and Exhaustion on VOC 2007 and
VOC 2012.

Time per object (s) Exhaustion Algorithm 1
VOC 2007, IoU=0.5 48.17 2.36
VOC 2007, IoU=0.8 48.17 1.95
VOC 2012, IoU=0.5 47.53 2.31
VOC 2012, IoU=0.8 47.53 1.94

5.3 Criteria Comparison on VOC 2007

To illustrate the advantages of our proposed criteria, we evaluate seven
typical object proposal methods using current recall based criteria and our
OMA based criteria on VOC 2007. The evaluated methods include edgeboxes
(EB) [30], geodesic object proposals (GOP) [38], multiscale combinatorial
grouping (MCG) [34], multi-thresholding straddling expansion of edge boxes
(M-EB) and multiscale combinatorial grouping (M-MCG) [39], objectness
(OBJ) [1] and selective search (SS) [40].

Recall vs. candidate number and OMA vs. candidate number.
Figure 5 shows the evaluation results of different methods using recall vs.
candidate number and OMA vs. candidate number under IoUs equal 0.5 and
0.8, respectively. We have:

1) Most methods perform more stable in OMA than recall against
candidate number increase after the top 100 candidates. It means that OMA
eliminates the probability of random hit effectively and reveals the real abilities
of different methods in objectness measurement.

2) It shows that OBJ method seems to obtain acceptable recall under IoU
equals 0.5 in Fig. 5(a), though it underperforms other methods. However,
we can see that its performance is worse than that of random sampling on
the top 1,000 candidates, which is denoted with a black dotted line (OMA
equals 0) in Fig. 5(b). It means OBJ method adopts incorrect objectness
measurement strategy. Note here, we cannot conclude that all the object
candidates generated by OBJ methods are incorrect. In fact, we can see that
OBJ method slightly outperforms random sampling under IoU equals 0.8 on
the top 500 candidates from Fig. 5(d). It means that OBJ method can locate
several objects accurately on these candidates, but random sampling hits more
objects under IoU equals 0.5.

Average recall vs. candidate number and average OMA vs.
candidate number. Figure 6 shows the evaluation results of different
methods using average recall vs. candidate number and average OMA vs.
candidate number, respectively. Similarly, we can see that average OMA
performs more stable than average recall. It validate the effectiveness of
average OMA in evaluating objectness measurement ability.

Recall vs. IoU and OMA vs. IoU. Figure 7 shows the evaluation
results of different methods using recall vs. IoU and OMA vs. IoU on the
top 1,000 candidates, respectively. Similar to Fig. 5, OBJ method seems to
obtain acceptable recall on the top 1,000 candidates, but its real performance
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(a) (b)

(c) (d)

Fig. 5: Evaluation results of different methods using recall vs. candidate number and
OMA vs. candidate number on VOC 2007. (a) Recall vs. candidate number (IoU = 0.5).
(b) OMA vs. candidate number (IoU = 0.5). (c) Recall vs. candidate number (IoU = 0.8).
(d) OMA vs. candidate number (IoU = 0.8).

(a) (b)

Fig. 6: Evaluation results of different methods using average recall vs. candidate number
and average OMA vs. candidate number on VOC 2007. (a) Average recall vs. candidate
number. (b) Average OMA vs. candidate number.
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(a) (b)

Fig. 7: Evaluation results of different methods using recall vs. IoU and OMA vs. IoU on
VOC 2007. (a) Recall vs. IoU on the top 1,000 candidates. (b) OMA vs. IoU on the top
1,000 candidates.

is worse than that of random sampling under IoUs between 0.5 and 0.8. using
OMA vs. IoU. It can be easily found when using OMA vs. IoU, but it is difficult
to realize when only using recall vs. IoU. Different to Fig. 5(b) and (d), no
method keeps a stable OMA value against IoU. Instead, most methods obtain
the best performance around IoU equals 0.8. It is caused by two reasons:

1) Because most object proposal methods adopt appropriate objectness
measurement, their performance decreases slowly when IoUs are between 0.5
and 0.8. In contrast, the performance of HPRS drops quickly in this IoU value
range. It leads to the increase of OMA values of most methods when IoUs are
between 0.5 and 0.8.

2) From Fig. 7(a), we can see that the recall values of most methods drop
considerably when IoU increases over 0.8. It means that most methods cannot
locate objects correctly under high IoUs. It leads to the degradation of OMA
under IoUs larger than 0.8 in Fig. 7(b).

5.4 Criteria Comparison inter Datasets

Object proposal evaluation is usually conducted on multiple datasets to
provide comprehensive evaluation results. An interesting question is whether
OMA based criteria can generate stable evaluation results to each object
proposal method. If so, it means the evaluation on different datasets is
redundant.

VOC 2007-few and VOC 2007-multiple. We first decompose VOC
2007 into two datasets according to the object number in each image, named
VOC 2007-few and VOC 2007-multiple. The object number in each image in
VOC 2007-few is one or two, and that in VOC 2007-multiple is no less than
three. The numbers of images in VOC 2007-few and VOC 2007-multiple are
2,874 and 2,078, respectively. We evaluate the seven methods on these two
datasets using the criteria in Fig. 5 to 7.
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Table 2: Average differences (×10−2) of evaluation results on VOC 2007-few and VOC
2007-multiple for six object proposal methods. Here, cand. denotes candidate number, AR
denotes average recall and AO denotes average OMA, respectively.

average difference recall vs. cand. OMA vs. cand. AR vs. cand. AO vs. cand. recall vs. IoU OMA vs. IoU
EB 23.01 10.20 16.08 2.40 13.90 6.11

GOP 21.67 9.40 15.06 0.68 18.01 7.78
MCG 25.78 11.86 16.88 2.33 15.94 8.88
M-EB 27.18 12.70 17.81 2.63 15.97 6.54

M-MCG 27.07 12.64 17.90 2.58 16.74 8.61
OBJ 6.58 1.02 12.60 0.83 14.53 1.68
SS 28.74 13.64 19.82 3.50 19.25 7.95

Table 3: Average differences (×10−2) of evaluation results on VOC 2007 and VOC 2012 for
six object proposal methods. Here, cand. denotes candidate number, AR denotes average
recall and AO denotes average OMA, respectively.

average difference recall vs. cand. OMA vs. cand. AR vs. cand. AO vs. cand. recall vs. IoU OMA vs. IoU
EB 1.87 1.13 3.63 0.43 4.89 1.59

GOP 6.03 3.61 1.46 2.86 3.61 3.23
MCG 1.70 1.01 0.44 2.25 1.34 3.44
M-EB 2.24 1.34 3.16 0.25 4.96 1.74

M-MCG 4.03 2.43 3.87 0.70 3.86 2.58
OBJ 1.55 0.92 1.81 2.73 2.46 1.48
SS 7.62 4.56 1.77 3.04 4.50 3.96

Figure 8 shows the evaluation results of different methods VOC 2007-few
and VOC 2007-multiple under the six criteria, namely recall vs. candidate
number under IoU equals 0.8, OMA vs. candidate number under IoU equals
0.8, average recall vs. candidate number, average OMA vs. candidate number,
recall vs. IoU on the top 1,000 candidates and OMA vs. IoU on the top 1,000
candidates, respectively. In Fig. 8, the solid curves denote the evaluation results
on VOC 2007-few and the dotted curves denote the evaluation results on VOC
2007-multiple. Each pair of a solid curve and a dotted curve with the same color
in a subfigure denote the evaluation results of an object proposal method on
VOC 2007-few and VOC 2007-multiple. We can see that the distance between
the evaluation results of the same method on two datasets are smaller under the
OMA based criteria than those under the corresponding recall based criteria.

To provide quantitative comparison, we calculate the average distance
between the evaluation results of each method on the two datasets under
different criteria. Average distance is denoted as the mean difference between
the vertical axis distances of all the sampling points of the two curves. Table 2
shows the average differences of each object proposal method on VOC 2007-
few and VOC 2007-multiple. We can see that the average differences for all the
methods under all the criteria drop significantly when replacing a recall based
criterion with the corresponding OMA based one. In particular, the average
differences on all the methods decrease over 80% when replacing average recall
with average OMA.

VOC 2007 and VOC 2012. We repeat the above experiment on VOC
2007 and VOC 2012. Figure 9 shows the evaluation results of different methods
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VOC 2007 and VOC 2012 under the six criteria same to Fig. 8, in which
the solid curves denote the evaluation results on VOC 2007 and the dotted
curves denote the evaluation results on VOC 2012. Table 3 shows the average
differences of each object proposal method on VOC 2007 and VOC 2012.

Unfortunately, the comprehensive degradation on average differences does
not appear between VOC 2007 and VOC 2012 when replacing a recall based
criterion with the corresponding OMA based one. In contrast, the average
differences increase in some cases, such as evaluating GOP with average
recall vs. candidate number and average OMA vs. candidate number. It may
be caused by the differences on object appearance diversity or image quality
on VOC 2007 and VOC 2012, which are the important and relevant factors of
objectness measurement. OMA based criteria perform more stable than recall
based criteria on two very similar datasets, such as VOC 2007-few and VOC
2007-multiple, but fail on the datasets with different object appearances, such
as VOC 2007 and VOC 2012. Hence, different datasets are still required for
comprehensive object proposal evaluation even OMA based criteria are used.

6 Conclusion

We proposed a new object proposal evaluation criterion OMA instead of recall
for revealing real abilities of different object proposal methods in objectness
measurement. Specially, we defined OMA based on HPRS and extended three
commonly used object proposal evaluation criteria by replacing recall with
OMA. We compared the evaluation results of six typical object proposal
methods on VOC 2007 and VOC 2012 using current recall based criteria and
our OMA based criteria. The experimental results illustrated that OMA based
criteria are superior to recall based criteria in providing more stable evaluation
results, but different datasets are still required for comprehensive evaluation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Evaluation results of different methods on VOC 2007-few and VOC 2007-multiple
under six criteria. (a) Recall vs. candidate number (IoU = 0.8). (b) OMA vs. candidate
number (IoU = 0.8). (c) Average recall vs. candidate number. (d) Average OMA vs.
candidate number. (e) Recall vs. IoU on the top 1,000 candidates. (f) OMA vs. IoU on
the top 1,000 candidates. Here, the solid curves denote the evaluation results on VOC 2007-
few and the dotted curves denote the evaluation results on VOC 2007-multiple.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Evaluation results of different methods on VOC 2007 and VOC 2012 under six
criteria. (a) Recall vs. candidate number (IoU = 0.8). (b) OMA vs. candidate number (IoU
= 0.8). (c) Average recall vs. candidate number. (d) Average OMA vs. candidate number. (e)
Recall vs. IoU on the top 1,000 candidates. (f) OMA vs. IoU on the top 1,000 candidates.
Here, the solid curves denote the evaluation results on VOC 2007 and the dotted curves
denote the evaluation results on VOC 2012.


