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ABSTRACT
RGB-Thermal salient object detection (RGB-T SOD) aims to locate
salient objects in images that include both RGB and thermal infor-
mation. Previous approaches often suggest designing a symmetric
network structure to tackle the challenge of dealing with low-
quality RGB or thermal images. However, we contend that RGB
and thermal modalities possess different numbers of channels and
disparities in information density. In this paper, we propose a novel
asymmetric dual-stream network (ADNet). Specifically, we leverage
an asymmetric backbone to extract four stages of RGB features
and four stages of thermal features. To enable effective interaction
among low-level features in the first two stages, we introduce the
Channel-Spatial Interaction (CSI) module. In the last two stages,
deep features are enhanced using the Self-Attention Enhancement
(SAE) module. Experimental results on the VT5000, VT1000, and
VT821 datasets attest to the superior performance of our proposed
ADNet compared to state-of-the-art methods.
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Figure 1: Examples of special cases in the RGB-T SOD dataset
including low-quality RGB images caused by insufficient
lighting, blurring, and low-quality thermal images caused
by similar temperatures.
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1 INTRODUCTION
RGB-Thermal salient object detection (RGB-T SOD) aims to detect
and precisely segment salient objects present in visible and thermal
image pairs [42]. It finds wide applications in automatic cropping
[34], autonomous driving [1], and semantic segmentation [8]. Early
studies primarily focused on processing RGB images [9, 27] or
RGB-depth data [7, 25]. Thermal images exhibit insensitivity to
lighting conditions, making themwell-suited for challenging scenes,
including nighttime and those with complex backgrounds [10].
Figure 1 illustrates the presence of specific instances of low-
quality RGB or thermal images in the current RGB-T SOD dataset.
The RGB and thermal modalities often exhibit complementary
characteristics.

The initial RGB-T SOD methods predominantly rely on CNN [10,
33], but their performance is subpar. As the Transformer [31]
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has evolved, the RGB-T SOD method based on it has emerged
gradually [12, 15]. The Transformer-based RGB-T SOD method sig-
nificantly enhances detection accuracy, yet it often exhibits a large
number of computational parameters, hindering its deployment on
edge or embedded devices. Consequently, the Transformer-based
SOD methods should prioritize lightweight design.

Previous research in the field of RGB-T SOD acknowledges
the equal significance of the thermal mode compared to the
RGB modality [12, 15], and advocates the use of a dual-stream
symmetrical structure to address potential damage in RGB images
or corruption in thermal images. However, there exists a noticeable
information density gap between the RGB and thermal modes. The
thermal mode should serve as an auxiliary and complementary
modality to the RGB mode. Consequently, employing symmetric
networks would result in inefficient utilization of computing
resources. Recent studies on the RGB-depth task have proposed
asymmetric networks [13]. These networks employ a Transformer
model in the RGB mode and a lightweight CNN model in the
depth mode, simultaneously preserving detection effectiveness and
reducing model complexity. Due to the presence of RGB image
corruptions in the RGB-T dataset, such as extreme darkness or
blurring, employing a lightweight CNN structure would severely
impair detection performance. Consequently, achieving effective
fusion becomes challenging, and in cases where RGB image
information is incomplete, the thermal modes exhibit a deficiency
in capturing global features, leading to inadequate detection of
salient regions.

In this paper, we propose an asymmetric network ADNet based
on lightweight Transformer. Initially, RGB features are extracted
using an undisclosed backbone architecture inspired by Swin-
B and Mobilevit. Subsequently, interaction with the low-level
features is performed using the Channel-Spatial Interaction (CSI)
module, which incorporates channel attention and spatial attention
mechanisms. Deep features are subsequently enhanced using the
Self-Attention Enhancement (SAE) module. Finally, the predicted
salient objects are obtained through the decoder. Experiments show
that our method preserves the performance of the results while
reducing the model complexity.

In summary, we make three main contributions: (1) We introduce
the first asymmetric network for RGB-T salient object detec-
tion. Experimental results demonstrate that our method achieves
superior performance, reducing the number of parameters by
approximately 46% and the computational load by around 40%.
(2) We introduce a CSI module for low-level features, enabling the
model to better leverage the CNN’s capability to emphasize local
features. Additionally, we present an SAE module for enhancing
deep features, improving attention on salient regions by enhancing
global features in both the RGB branch and the thermal branch.

2 RELATEDWORK
2.1 RGB-T SOD
Due to their illumination invariance, thermal images are suit-
able for object detection in complex scenes with dim light and
cluttered backgrounds. Early RGB-T SOD methods mainly used
machine learning techniques to learn cross-modal feature repre-
sentations [18, 29]. Wang et al. [32] created the first RGB-T SOD

benchmark dataset named VT821 and proposed a graph-based
multi-task manifold ranking algorithm to fuse RGB and thermal
data. Tu et al. [30] adopted a multi-mode multi-scale manifold
ranking and cooperative graph learning algorithm to achieve cross-
modal salient object detection. They also built a more challenging
dataset, VT1000.

With the development of deep learning, Tu et al. [28] contributed
a large dataset VT5000 and proposed a baseline model that
combines CNN and attention mechanisms. Tu et al. [26] proposed
a dual-decoder with multi-interactions to integrate multi-stage
interactions of bimodal and global context. Huo et al. [10] proposed
a context-guided stacked refinement network to fuse the two
modalities, which used light CNN as backbone. Cong et al. [2]
introduced a global illumination estimation module to predict the
global illuminance score of the image, so as to regulate the role
played by the two modalities. Ma et al. [17] proposed a spatial
complementary fusion module to explore the com plementary
local regions between RGB-T images. With the development of
Transformer, Liu et al. [15] proposed an RGB-T SOD method based
on Swin Transformer. Feature extraction and feature interaction
fusion are two key issues in the RGB-T SOD task.

2.2 Vision Transformer for SOD
The breakthrough progress of Transformers [31] in NLP encouraged
researchers to apply them to computer vision. Dosovitskiy et al. [4]
first proposed the ViT model based on Transformers for large-
scale supervised image classification. Liu et al. [14] proposed Swin
Transformer with shifted window operations and hierarchical
design, achieving good performance on various image/video tasks.
To address the high computational cost of Transformer, Sachin
et al. [21] proposed Mobilevit, which fuses MobileNet and ViT,
achieving outstanding performance on lightweight networks.

Many researchers have also applied Transformers to SOD tasks.
For example, Ren et al. [24] and Zhu et al. [44] applied an encoder
based purely on Transformer for single-modal SOD, while some
studies [41] used a PVT [35] and CNN hybrid structure for feature
extraction and salient map prediction. Some studies [16] separately
modeled RGB and depth features based on a pure Transformer
architecture. Liu et al. [15] used the Swin Transformer [14] encoder
to extract features from RGB and thermal/depth images, and then
achieved cross-modal fusion for SOD with edge guidance. Pang
et al. [22] proposed a cross-modal view-mixed transformer to
construct a top-down transformer-based information propagation
path. Transformer-based methods achieve better performance
due to their ability to capture global features, but at the cost of
significantly higher parameters and computations.

3 METHOD
3.1 Overview
The framework of our proposed model is shown in Figure 2. It
consists of an asymmetric dual-stream backbone as the feature
extraction module, a Channel-Spatial Interaction module to fuse
the low-level features, a Self-Attention Enhancement module to
enhance the deep features, and finally a decoder to give the salient
object prediction.
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Figure 2: The framework of the proposed ADNet, including RGB feature extractor, Thermal feature extractor, Channel-Spatial
Interaction module and Self-Attention Enhancement module.

Table 1: The output feature map sizes of different stages for
RGB and thermal modalities, where stage 0 represents the
feature map before the feature extractor.

Stage Size of 𝐹𝑟𝑔𝑏 Size of 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 Size of 𝐹𝑓 𝑢𝑠𝑖𝑜𝑛
stage 0 [128, 96, 96] [16, 192, 192] /
stage 1 [128, 96, 96] [64, 96, 96] [64, 96, 96]
stage 2 [256, 48, 48] [96, 48, 48] [64, 48, 48]
stage 3 [512, 24, 24] [128, 24, 24] [64, 24, 24]
stage 4 [1024, 12, 12] [640, 12, 12] [64, 12, 12]

3.2 Asymmetric Dual-stream Backbone
Previous studies utilize a dual-stream backbone for extracting
features from both RGB and thermal modalities. Through the
analysis of feature maps at each stage, we observe that an asymmet-
ric structure effectively attends to both local and global features.
Figure 3 illustrates the feature maps of the dual-stream Swin-B
in the top two rows, the feature maps of dual-stream Mobilevit
in the bottom two rows, and the feature maps extracted by our
proposed asymmetric dual-stream backbone in the middle two
rows. The Mobilevit-based backbone predominantly emphasizes
low-level features, the Swin-B-based backbone primarily focuses on
high-level features, whereas our asymmetric backbone effectively
captures both low-level and high-level features.

RGB Feature Extractor. We use a pretrained Swin-B as the
backbone for the RGB modality, taking inputs of size 384×384. It
first splits the input into a series of patches and then proceeds
through four stages where the number of channels is doubled and
the feature map size is halved at each stage. Through the RGB
modality backbone, we can obtain a set of five feature maps with
different resolutions that 𝐹𝑟𝑔𝑏 = {𝐹 𝑖

𝑟𝑔𝑏
|𝑖 = 0, 1, 2, 3, 4}.

Thermal Feature Extractor. The thermal modality utilizes a
pretrained Mobilevit model as its backbone, with inputs consisting
of infrared images of the same size as the RGB modality. Initially,
it performs a 3×3 convolution to extract local features from the
image. Subsequently, following the RGB branch, the backbone is
divided into four stages, with the number of channels doubling and
the resolution halving at each stage, as depicted in Table 1. Through
the thermal modality backbone, we also obtain a set of five feature
maps with different sizes 𝐹𝑡 = {𝐹 𝑖𝑡 |𝑖 = 0, 1, 2, 3, 4}.

The features of stage 1 to stage 4 from both the RGB and thermal
modalities are resized to 64 channels using a 1×1 convolution, and
subsequently inputted into the CSI module.

3.3 Channel-Spatial Interaction Module
Based on our analysis in Figure 3, it is observed that CNN is better
at extracting low-level features, while Transformer is better at
extracting high-level features. As a result, we propose a method to
combine the strengths of both structures by incorporating feature
interaction attention layers between the extracted feature layers to
enhance the interaction of RGB and thermal modes.

For designing the modality interaction, we employ both the
channel attention mechanism and the spatial attention mecha-
nism [38]. We take the features extracted in stages 1 to 4 of the
two modalities respectively, denoting two groups of features as
𝐹𝑟𝑔𝑏 = {𝐹 𝑖

𝑟𝑔𝑏
|𝑖 = 1, 2, 3, 4} and 𝐹𝑡 = {𝐹 𝑖𝑡 |𝑖 = 1, 2, 3, 4}.

Figure 4 illustrates that, at each layer 𝑖 , the feature maps of the
RGB and thermal branches are initially concatenated as 𝐹 𝑖

𝑓 𝑢𝑠𝑖𝑜𝑛
:

𝐹 𝑖
𝑓 𝑢𝑠𝑖𝑜𝑛

= 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐹 𝑖
𝑟𝑔𝑏
, 𝐹 𝑖𝑡 ). (1)

Next, the channel attention of the fused modality is computed:

𝐶𝐴𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝐿𝑃 (𝑃𝑎𝑣𝑔 (𝐹 𝑖𝑓 𝑢𝑠𝑖𝑜𝑛)) +𝑀𝐿𝑃 (𝑃𝑚𝑎𝑥 (𝐹 𝑖𝑓 𝑢𝑠𝑖𝑜𝑛))),
(2)
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Image Stage0 Stage1 Stage2 Stage3 Stage4

RGB: 
swin-B

RGB: 
swin-B

Thermal: 
swin-B

Thermal: 
Mibilevit

RGB: 
Mibilevit

Thermal: 
Mibilevit

Figure 3: Visualization of input images and features maps of
4 stages using different backbones.

where 𝐶𝐴𝑖 means channel attention operation, 𝑖 ∈ {1, 2, 3, 4},
𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) means denotes the sigmoid activation function,𝑀𝐿𝑃 (·)
is a two-layer perceptron. 𝑃𝑎𝑣𝑔 (·) and 𝑃𝑚𝑎𝑥 (·) represent the global
max pooling and average pooling, respectively.

Subsequently, we calculate the spatial attention 𝑆𝐴𝑖𝑟𝑔𝑏 and 𝑆𝐴𝑖𝑡
for each individual modality 𝐹 𝑖𝑟𝑔𝑏 and 𝐹 𝑖𝑡 , respectively:

𝑆𝐴𝑖
𝑟𝑔𝑏

= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣7×7 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑃𝑎𝑣𝑔 (𝐹 𝑖𝑟𝑔𝑏 ), 𝑃𝑚𝑎𝑥 (𝐹 𝑖𝑟𝑔𝑏 )))),
(3)

𝑆𝐴𝑖𝑡 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐶𝑜𝑛𝑣7×7 (𝐶𝑜𝑛𝑐𝑎𝑡 (𝑃𝑎𝑣𝑔 (𝐹 𝑖𝑡 ), 𝑃𝑚𝑎𝑥 (𝐹 𝑖𝑡 )))), (4)
where 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (·) denotes the sigmoid activation function,𝐶𝑜𝑛𝑣7×7
means convolution operation with the kernel size 7×7, 𝑃𝑎𝑣𝑔 (·) and
𝑃𝑚𝑎𝑥 (·) represent the global max pooling and average pooling.

Thirdly, we combine the channel attention and spatial attention
to derive the fused attention for the two modalities using the
following procedure:

𝐴𝑡𝑡𝑖
𝑟𝑔𝑏

= 𝑆𝐴𝑖𝑡 +𝐶𝑜𝑛𝑣3×3 (𝐹 𝑖𝑓 𝑢𝑠𝑖𝑜𝑛 ×𝐶𝐴𝑖 ), (5)

𝐴𝑡𝑡𝑖𝑡 = 𝑆𝐴
𝑖
𝑟𝑔𝑏

+𝐶𝑜𝑛𝑣3×3 (𝐹 𝑖
𝑓 𝑢𝑠𝑖𝑜𝑛

×𝐶𝐴𝑖 ), (6)

where 𝑆𝐴𝑖𝑡 and 𝑆𝐴
𝑖
𝑟𝑔𝑏

means the spatial attention, 𝐶𝐴𝑖𝑡 and 𝐶𝐴
𝑖
𝑟𝑔𝑏

means the channel attention, 𝐴𝑡𝑡𝑖𝑡 and 𝐴𝑡𝑡𝑖
𝑟𝑔𝑏

denotes the fused
attention.

Lastly, we add 𝐴𝑡𝑡𝑖
𝑟𝑔𝑏

and 𝐴𝑡𝑡𝑖𝑡 to the original feature maps, ob-
taining features that incorporate information from the interaction.

3.4 Self-Attention Enhancement Module
Deep features, in contrast to shallow features, exhibit a heightened
focus on the semantic information within the image, enabling
them to further prioritize salient regions. We propose to enhance
feature maps by employing multi-head self-attention (MHSA) [31]
for deep features. We define the multi-head attention mechanism
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡 (𝑞, 𝑘, 𝑣) as follows:

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡 (𝑞, 𝑘, 𝑣) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝐻𝑒𝑎𝑑1, ..., 𝐻𝑒𝑎𝑑ℎ)𝜔𝑜 , (7)

where𝑞,𝑘 and 𝑣 are the same featuremap as input, {𝐻𝑒𝑎𝑑1, ..., 𝐻𝑒𝑎𝑑ℎ}
means to split the input into several heads, here we take the head
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Figure 4: The design of Channel-Spatial Interaction module.

as 8. 𝜔𝑜 represents the matrix of the final linear transformation.
Then, we calculate attention 𝐻𝑒𝑎𝑑𝑖 for each head:

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥{
𝑄𝑖𝐾

𝑇
𝑖√︁
𝑑𝑘

} ·𝑉𝑖 , (8)

where 𝑇 represents the matrix transpose operation, 𝑑𝑘 is a scaling
factor, here equal to 𝑑𝑖𝑚𝑚𝑜𝑑𝑒𝑙/𝑛𝑢𝑚ℎ𝑒𝑎𝑑𝑠 , 𝑑𝑚𝑜𝑑𝑒𝑙 is equal to the
number of channels of the input feature map 64, and 𝑛𝑢𝑚ℎ𝑒𝑎𝑑𝑠 is
equal to 8, 𝑄𝑖 , 𝐾𝑖 and 𝑉𝑖 is conputed by:

𝑄𝑖 =𝑊
𝑖
𝑞 · 𝑞, (9)

𝐾𝑖 =𝑊
𝑖
𝑘
· 𝑘, (10)

𝑉𝑖 =𝑊
𝑖
𝑣 · 𝑣, (11)

where 𝑞, 𝑘 and 𝑣 are the input feature map,𝑊 𝑖
𝑞 ,𝑊

𝑖
𝑘
,𝑊 𝑖

𝑣 correspond
to linear transformation matrix of query, key and value.

In this module, we aim to use an 8-head attention mechanism for
the features extracted from the input in stage4 and stage5, namely,
{𝐹 4

𝑟𝑔𝑏
, 𝐹 5

𝑟𝑔𝑏
} and {𝐹 4𝑡 , 𝐹 5𝑡 }. Specifically, we first decompose 𝑄 , 𝐾 ,

and 𝑉 into ℎ heads, and then calculate attentions for each ℎ. We
then concatenate and project them to obtain the final output. By
adding multi-head self-attention to the original feature map, we
can enhance the feature of ℎ heads, and calculate attentions of each
ℎ. Next, we concatenate and practice the final projection to obtain
the final output. We can obtain an enhanced feature representation
by adding multi-head self-attention to the original feature map.

3.5 Decoder
Based on previous work [37], we adopt the residual block structure
to construct a convolutional decoder. In total, the model comprises
4 residual blocks, with each block consisting of a 3×3 convolutional
layer, 64 output channels, a BatchNorm layer, and a ReLU activation
function. The output of each residual block is upsampled using
bilinear interpolation to match the input size of the subsequent
residual block.

This upsampling decoder gradually recovers high-dimensional
feature maps through multi-scale feature extraction and upsam-
pling. We send two sets of transformed feature maps {𝐹 𝑖𝑟𝑔𝑏 |𝑖 =

1, 2, 3, 4} and {𝐹 𝑖𝑡 |𝑖 = 1, 2, 3, 4} into two decoders, and then the
output of the decoder is concatenated to form a fused result.
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Figure 5: Comparison of Parameters, FLOPs and 𝐹𝜔 of our
method with SOTA methods.

Figure 6: P-R curves comparison of different models on three
RGB-T datasets.

3.6 Loss Function
The results of the RGB branch are obtained from the RGB decoder,
the results of the thermal branch are obtained from the thermal
decoder, and the two results are concatenated to obtain the fused
result. Inspired by previous work [12, 37], we compute these three
loss functions to measure the gap between the predicted results
and the true results:

L𝑟𝑔𝑏 = L𝐵𝐶𝐸 + L𝑆𝑆𝐼𝑀 , (12)

L𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = L𝐵𝐶𝐸 + L𝑆𝑆𝐼𝑀 , (13)
L𝑓 𝑢𝑠𝑖𝑜𝑛 = L𝐵𝐶𝐸 + L𝑆𝑆𝐼𝑀 + L𝐼𝑜𝑈 , (14)

where BCE loss stands for binary cross entropy loss [3], SSIM loss
represents structural similarity indexmeasure [36], IoU loss denotes
intersection over union loss [20]. The total loss function consists
of three components:

L = L𝑟𝑔𝑏 + L𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + L𝑓 𝑢𝑠𝑖𝑜𝑛, (15)

whereL𝑟𝑔𝑏 ,L𝑡ℎ𝑒𝑟𝑚𝑎𝑙 andL𝑓 𝑢𝑠𝑖𝑜𝑛 represent RGB loss, thermal loss
and fusion loss, respectively.

4 EXPERIMENT
4.1 Datasets and Metrics
Our method is evaluated on three publicly available datasets using
seven commonly employed metrics.

Datasets.We evaluate our proposed method on three publicly
available RGB-T SOD datasets, including VT821 [32], VT1000 [30],
and VT5000 [28]. Thermal images in VT821 pose specific challenges
during manual registration by forming empty regions, which we
address by adding noise to some of the visible images. In VT5000,
the authors labeled 11 challenging scenes based on factors such as
object size, lighting conditions, center bias, number of prominent

objects, and background quality. Our model is trained using 2,500
different image pairs from VT5000, while the remaining image pairs,
along with VT821 and VT1000, are utilized for testing.

Metrics.We adopt widely used metrics to evaluate the perfor-
mance of our model and the SOTA RGB-T SOD model. They are
precision-recall (PR) curve, the mean F-measure (𝐹𝑎𝑣𝑔) [43], max F-
measure (𝐹𝑚𝑎𝑥 ) [43], weighted F-measure (𝐹𝜔 ) [19], mean absolute
error (𝑀𝐴𝐸) [23], E-measure (𝐸𝑚) [6], and S-measure (𝑆𝑚) [5].

4.2 Implementation Details
The RGB and thermal input images are resized to a resolution
of 384×384 pixels. During the training phase, we apply various
strategies to augment all the training image pairs of RGB-thermal
for data augmentation. Our networks are trained using the SGD
optimizer with a batch size of 8, an initial learning rate of 0.025,
and a momentum of 0.9. The model is trained for 100 epochs with
a learning rate decay of 5e-4. Both the training and testing of our
model are conducted using PyTorch on an NVIDIA RTX 3090 GPU.

4.3 Ablation Studies
Asymmetric Backbone. As shown in Table 3, we compare
the symmetric SwinTransformer based network, the symmetric
Mobilevit based network and our proposed asymmetric ADNet.
From the comparison results, we can see that our proposed
asymmetric network performs well, with much higher performance
than the symmetric Mobilevit network and even surpassing the
structure of the symmetric Swin Transformer.

Feature Fusion. Table 4 demonstrates that both interaction and
augmentation operations on features yield improvements, with the
combined interaction and augmentation yielding themost favorable
results. These findings validate the effectiveness of our proposed
feature manipulation and highlight the crucial role played by
information sharing between RGB and thermal modes in enhancing
the effectiveness of saliency detection.

Model Complexity. In addition, we explore the complexity of
the model, as shown in Table 5. We measure the complexity of the
model by counting the number of parameters and the number of
computations. According to the experimental results, the introduc-
tion of Mobilevit can effectively reduce the model complexity, and
the feature interaction module and feature enhancement model do
not introduce too many parameters and computations.

4.4 Comparison with State-of-the-Arts
To demonstrate the effectiveness of the proposed method, 14 state-
of-the-art SOD methods are introduced to compare as follows:
M3S-NIR [29], MTMR [32], SGDL [30], ADF [32], MIDD [26],
CSRNet [10], OSRNet [11], TNet [2], MCFNet [17], CGFNet [33],
CAVER [22], ACMANet [40], SwinNet [15], CMDBIF [39]. All
models are trained on the VT5000 training set (2,500 images).

Quantitative Evaluation.We use the same evaluation toolkit
to evaluate the prediction results of all methods as shown in Table 2,
with the best metrics in bold. Figure 5 presents a comparison of
Parameters, FLOPs and 𝐹𝜔 of our method with SOTA methods and
Figure 6 is a comparison of precision-recall (PR) curves between
our method and other approaches. It is evident that our proposed
method surpasses the current state-of-the-art.
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Table 2: Performance comparison with SOTA methods on VT5000, VT1000 and VT821, the best results are highlighted in Bold.

VT5000 VT1000 VT821

Methods 𝐹𝑎𝑣𝑔↑ 𝐹𝑚𝑎𝑥↑ 𝐹𝜔↑ 𝑀𝐴𝐸↓ 𝐸𝑚↑ 𝑆𝑚↑ 𝐹𝑎𝑣𝑔↑ 𝐹𝑚𝑎𝑥↑ 𝐹𝜔↑ 𝑀𝐴𝐸↓ 𝐸𝑚↑ 𝑆𝑚↑ 𝐹𝑎𝑣𝑔↑ 𝐹𝑚𝑎𝑥↑ 𝐹𝜔↑ 𝑀𝐴𝐸↓ 𝐸𝑚↑ 𝑆𝑚↑

M3S-NIR [29] 0.575 0.644 0.327 0.168 0.780 0.652 0.717 0.769 0.463 0.145 0.827 0.726 0.734 0.780 0.407 0.140 0.859 0.723
MTMR [32] 0.595 0.662 0.397 0.114 0.795 0.680 0.715 0.755 0.485 0.119 0.836 0.706 0.662 0.747 0.462 0.108 0.815 0.725
SGDL [30] 0.672 0.737 0.558 0.089 0.824 0.750 0.764 0.807 0.652 0.090 0.856 0.787 0.731 0.780 0.583 0.085 0.846 0.764
ADF [32] 0.778 0.863 0.722 0.048 0.891 0.864 0.847 0.923 0.804 0.034 0.921 0.910 0.717 0.804 0.627 0.077 0.843 0.810
MIDD [26] 0.801 0.871 0.763 0.043 0.897 0.867 0.882 0.926 0.856 0.027 0.933 0.915 0.805 0.874 0.760 0.045 0.895 0.871
CSRNet [10] 0.811 0.857 0.796 0.042 0.905 0.868 0.877 0.918 0.878 0.024 0.925 0.918 0.831 0.88 0.821 0.038 0.909 0.885
OSRNet [11] 0.823 0.866 0.807 0.040 0.908 0.875 0.892 0.929 0.891 0.022 0.935 0.926 0.814 0.862 0.801 0.043 0.896 0.875
TNet [2] 0.846 0.895 0.84 0.033 0.927 0.895 0.889 0.937 0.895 0.021 0.937 0.929 0.842 0.904 0.841 0.03 0.919 0.899
MCFNet [17] 0.848 0.886 0.836 0.033 0.924 0.887 0.902 0.939 0.906 0.019 0.944 0.932 0.844 0.889 0.835 0.029 0.918 0.891
CGFNet [33] 0.851 0.887 0.831 0.035 0.922 0.883 0.906 0.936 0.900 0.023 0.944 0.923 0.845 0.885 0.829 0.038 0.912 0.881
CAVER [22] 0.856 0.897 0.849 0.028 0.935 0.899 0.906 0.945 0.912 0.016 0.949 0.938 0.854 0.897 0.846 0.026 0.928 0.897
ACMANet [40] 0.858 0.89 0.823 0.033 0.932 0.887 0.904 0.933 0.889 0.021 0.945 0.927 0.837 0.873 0.807 0.035 0.914 0.883
SwinNet [15] 0.865 0.915 0.846 0.026 0.942 0.912 0.896 0.948 0.894 0.018 0.947 0.938 0.847 0.903 0.818 0.03 0.926 0.904
CMDBIF [39] 0.868 0.892 0.846 0.032 0.933 0.886 0.914 0.931 0.909 0.019 0.952 0.927 0.856 0.887 0.837 0.032 0.923 0.882

Ours 0.893 0.924 0.884 0.022 0.953 0.922 0.916 0.952 0.920 0.015 0.952 0.944 0.869 0.915 0.860 0.024 0.930 0.915

RGB Thermal GT Ours MCFNet CGFNet CMDBIF SwinNet

Figure 7: Visual comparison with SOTA RGB-T methods.

Qualitative Evaluation.The visualization results of ourmethod
are shown in Figure 7. The upper two rows are examples of poor
performance of RGB images (blurry, dim or too small salient area),
and the lower two rows are examples of poor performance of
thermal images (indistinguishable from the background). It can
be seen that our method can achieve better detection results in both
cases and is more robust.

5 CONCLUSION
In this paper, we introduced ADNet, an asymmetric network
designed for the RGBT-SOD task. An asymmetric dual-stream
backbone was utilized to extract both RGB and thermal features.
Additionally, the CSI module and SAE module were introduced
to enhance cross-modal interactions. Experimental results demon-
strated that our ADNet achieved excellent performance on public
datasets, validating the effectiveness of our proposed asymmetric
network. Moreover, our method used lower model parameters and
computational costs.
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Table 3: Ablation results of different backbone on VT5000
test set, 𝑆 represents Swin-B,𝑀 represents Mobilevit.

Backbone 𝐹𝑎𝑣𝑔↑ 𝐹𝑚𝑎𝑥↑ 𝐹𝜔↑ 𝑀𝐴𝐸↓ 𝐸𝑚↑ 𝑆𝑚↑

S + S 0.878 0.915 0.873 0.024 0.947 0.914
M + M 0.766 0.836 0.730 0.049 0.883 0.839
S + M 0.879 0.918 0.877 0.023 0.950 0.917

Table 4: Ablation results of different feature fusion. CSI
represents feature interaction module, SAE represents multi-
head self-attention module. The results are test on VT5000.

Fusion 𝐹𝑎𝑣𝑔↑ 𝐹𝑚𝑎𝑥↑ 𝐹𝜔↑ 𝑀𝐴𝐸↓ 𝐸𝑚↑ 𝑆𝑚↑

CSI 0.887 0.918 0.879 0.023 0.949 0.917
SAE 0.889 0.920 0.878 0.023 0.950 0.918
CSI + SAE 0.893 0.924 0.884 0.022 0.953 0.922

Table 5: Ablation of model complexity. 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠 denotes the
number of parameters of the model while 𝐹𝐿𝑂𝑃𝑠 represents
the cost of computation.

Methods 𝑃𝑎𝑟𝑎𝑚𝑡𝑒𝑟𝑠 (𝑀 )↓ 𝐹𝐿𝑂𝑃𝑠 (𝐺 )↓

S+S 174.600 94.795
M+M 11.107 13.396
S+M 92.854 54.095
S+M+CSI 93.302 56.659
S+M+CSI+SAE 93.319 56.683

(021714380026), the Program B for Outstanding Ph.D. candidate
of Nanjing University, and the Collaborative Innovation Center of
Novel Software Technology and Industrialization.
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