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ABSTRACT
The Deep Video Understanding Challenge (DVU) is a task that
focuses on comprehending long duration videos which involve
many entities. Its main goal is to build relationship and interaction
knowledge graph between entities to answer relevant questions.
In this paper, we improved the joint learning method which we
previously proposed in many aspects, including few shot learning,
optical flow feature, entity recognition, and video description
matching. We verified the effectiveness of these measures through
experiments.

CCS CONCEPTS
• Computing methodologies→ Computer vision.
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1 INTRODUCTION
Deep video understanding (DVU) is a task aiming to understand
content of long duration videos on the basis of multimodal
analysis [2]. The details of the task are shown in Figure 1. However,
since videos are unstructured, it is hard to understand their content.
Firstly, entity recognition is the basis and the prime challenge of
video analysis. A long duration video may contain many entities,
and the appearance of each entity may be different in different
scenes. Secondly, interaction between entities may be complex
and relation between entities may change over time. In terms
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• Fill in the graph space
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• Find the 1-to-1 relationship between scenes and natural language descriptions
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Figure 1: The description of deep video understanding task.

of answering questions for video analysis, problems also need to
solved.

Our previous work [16] proposed a solution for answering the
movie-level questions and later we further proposed an extended
method [17] for answering both movie-level questions and scene-
level questions by joint learning. As the basis, the designated
scenes are divided into several shots, i.e., video clips without
montage, and the designated scenes are merged into super-scenes,
each of which contains a complete film section occurring at a
certain place. The entities are recognized by tracking their traces
in shots, scenes and super-scenes. Video visual features, audio
features and text features are fused in the three modules. In the
scene sentiment classification module, the video visual feature,
audio feature and text feature of a designated scene are fused to
generate the sentiment embedding for scene sentiment prediction.



In the super-scene video relationship recognition module, super-
scene relationship embeddings are generated from the fused video
visual features, audio features and text features at scene level,
along with visual features of two entities and visual union features
of the entity pair at scene level by mean pooling. In the scene
interaction recognition module, scene video visual feature, scene
audio feature, scene text feature, scene visual features of two entities
and scene visual feature of an entity-pair are fused together to
generate the interaction embedding for predicting the interaction
between two entities. All the three modules are trained jointly as an
end-to-end model. According to the scene interaction embeddings
and movie relationship embeddings, scene interaction knowledge
graph and movie relation knowledge graph can be built by
computing distances between candidate interactions’ embeddings
and candidate relations’ embeddings, and most questions can
be answered. To answer the questions about scene sentiment
classification, the distances between scene sentiment embeddings
and embeddings of candidate answers need to be computed. As
for matching scenes and descriptions, the description is chosen
according to the key words about interactions, relations between
mentioned entities.

From the analysis on tasks and existed methods, we find some
challenges. 1) It is difficult to track entities accurately in long video.
2) It is hard to perform well in sentiment classification. For the
first problem, we suppose that the previous entity recognition
sub-module and the feature extraction mechanism are not robust
enough for different scenes in different movies. For the second
problem, we consider that it is related to there are only a few
samples of a sentiment category for training the scene sentiment
classification module.

Thus, we propose four main improvements in this paper: 1)
Blended object tracking is used for entity extraction. 2) Optical flow
features are added for entity feature fusion. 3) Few shot learning
is introduced for sentiment analysis. 4) Descriptions are matched
with different strategies.

2 PRELIMINARY
Entity tracking and recognition in video. With some images
of entities are provided, face recognition is an effective approach
to tracking people in videos. RetinaFace [3] provides a valid
solution for face box prediction and 2D facial landmark localisation.
However, people in videos, especially in movies, are sometimes
shot in close-up view and the whole figures may also appear.
Thus, face detection results along with object tracking results are
necessary to provide a useful solution to complete person tracking
and recognition. CenterTrack [18] containing a one-stage object
detector is a real-time tracking-by-detection method. TraDes [15]
follows the joint detection and tracking paradigm and exploits the
motion clue from tracking to enhance detection. SiamMOT [9] is
a region-based siamese network for multi-object tracking, which
estimates motion between two frames and the detected instances
are associated.
Video visual feature extraction. Abundant networks have been
proposed to extract image features, e.g., AlexNet [7], VGG [11],
ResNet [4], etc. Though videos are composed by multiple images,

videos contain additional features: motion between frames. Si-
monyan et al. [10], propose a two-stream convolution network
to incorporate spatial and temporal features. Tran et al. [13],
use deep 3D convolutional networks for spatiotemporal feature
learning. Carreira et al. [1], introduce a new two-stream inflated 3D
convolutional network, which expands filters and pooling kernels
of 2D convolution networks into 3D convolution networks.
Few-shot learning. Few-shot learning requires networks to
classify samples into several classes where each class is only
described with few examples. The key task for few-shot learning
is to learn a function for similarity computation. Koch et al. [6],
propose a siamese neural network to rank similarity between inputs.
Santoro et al. [8], propose a memory-augmented neural network
to rapidly assimilate new data and make accurate predictions with
a few samples. Vinyals et al. [14], learn a network to map a small
labelled support set and an unlabelled example to its labels. Snell et
al. [12], propose prototypical networks that compute distances to
prototype representations of each class to learn a metric space for
classification.

3 OUR METHOD
As shown in Figure 2, the joint learning method we proposed before
extracts visual, audio and subtitle features from each scene and
concatenates them together as scene feature. Then, the features of
all scenes that comprise a super-scene are averaged as super-scene
features and concatenated to each scene feature. Finally, we use
super-scene features to predict relationships and scene features to
predict interactions between entities, respectively.Relationship and
interaction prediction branches are trained together, which reflects
the effects which physical relationships and interactions exert on
each other. As DVU challenge also provides sentiment data, we
therefore add sentiment prediction branch to the joint learning
framework.

In this paper, we show improvements of the previous method
in different aspects. As the number of sentiment training samples
are small, we designed new methods for few shot learning. We also
introduce optical flow features to help interaction prediction. In
order to increase the accuracy of entity detection, we improved the
MOT method. To answer the questions about scene description, we
design a multi-modal model to match description and scene.

3.1 Few shot learning
Sentiment in the dataset is characterized by many categories,
few samples and serious data bias. In our previous research,
we predicted sentiment by embedding scene features and then
calculating cosine similarity with sentiment category features. It
has been a few shot learning method to compare feature similarity
instead of directly predicting categories. In this paper, in order
to carry out few shot learning for sentiment, we tried two new
schemes.

One is to assign emotion score to each sentiment category
through VADER [5] , and then use a regression model to predict
emotion score using scene features. Finally, we calculated the
distance between predicted scores and the emotion score of
sentiment catagories.



Figure 2: The joint learning method extracts mutiple modal features and concatenate them as scene feature. Then we average
scene features as super-scene feature and concatenate to scene feature again. We embedded features and calculate cosine
similarities between them and category features to get the final result. Relationship, interaction and sentiment prediction
branches are trained together.

The other is to calculate the distribution of sentiment categories
in the training set, and then multiply it to loss as a cost, as follows:

𝑙+ = (1 − cos(𝛽, 𝑓+))2 · 𝑑+ (1)

𝑙− = (cos(𝛽, 𝑓−) + 1)2 · 𝑑− (2)

where 𝑙+ denotes the positive loss, 𝛽 denotes the feature of scene,
𝑓+ denotes the feature of the positive sentiment, 𝑑+ denotes the
distribution ratio of positive sentiment, 𝑙− denotes the negative
loss, 𝑓− denotes the feature of negative sentiment, , 𝑑− denotes the
distribution ratio of negative sentiment.

In this way, negative loss of the sentiments of small-sample
categories increases, while for large-sample categories, positive
loss of the sentiments increases.

3.2 Optical flow feature
As mentioned in I3D [1], I3D performs better than C3D in action
recognition task due to the introduction of optical flow. According
to the correlation between action recognition task and interaction
prediction task, we used I3D to extract visual features. Due
to limited developing data, We used I3D models pretrained by
ImageNet, which outperforms Charades and Kinetics.

3.3 Entity recognition
Entities are divided into person, location and concept. In this
paper, location is still recognized according to SURF and scene
segmentation as in the previous method. Considering that in the
previous work we only use CenterTrack [18] for person tracking
with some traces omitted, we combine the results of CenterTrack,
TraDes [15] and SiamMOT [9] to track and recognize people. Since
the three methods could track the same person repeatedly, we
compute the intersection of union (IoU) between each two bounding
boxes at each frame and two bounding boxes need to be merged
when the IoU of them is no more less than 0.6. When merging
the inter-covering bounding boxes, we keep the smaller bounding
box and tag the other bounding box with the id of the former one.
However, people cannot be recognized only with tracking results.

Similar to our previous method, RetinaFace [3] is used to recognize
faces of people and SURF is used for matching templates of people.
When there is no results of SURF and face recognition at a certain
frame, the corresponding tracking bounding boxes are mapped
to an “Unknown” person. Otherwise, a tracking bounding box is
mapped to a person whose face/template has the largest covering
over the tracking bounding box. If a person is mapped with multiple
tracking bounding boxes at a frame, the bounding box with the
largest covering over the face/template is kept and the information
about person name, start frame index and end frame index of each
tracking id is recorded. After the face recognition results and the
SURF results at all frames are processed, we re-map the tracking
results that were mapped before to the “Unknown” person to a new
person, i.e., the one mapped with a tracking bounding box that
have the same tracking id with the current tracking bounding box
during a frame window.

3.4 Video description matching
We design a video description matching model on the basis of multi-
modal features. We use BERT to export description features, and
concatenate visual, audio, subtitle, character and character name
features of each scene as video features. One scene corresponding
to the description is positive sample, and other scenes are negative
samples. Similarities between description and each scene are the
outputs of the model.

3.5 Query Answering
Movie-level. We answer the following three types of queries: 1)
To find all the possible paths, we construct a movie graph according
to the relationship between entities, using entities as nodes and
relations as edges. We use a depth-first search method to find all
the possible paths between the source entity and the target entity,
and use the confidence score of the relationship as the threshold
for pruning. 2) To fill in the graph space, we traverse the edges of
movie graph, obtain candidate edges that match the queries, and
sort them according to the scores generated by our method. 3) We
traverse all the choices, check whether the movie graph has an



edge that satisfies the conditions, and choose the best match as the
answer.
Scene-level. We answer the following five types of queries: 1)
To find the unique scene, we match the given interactions with
scene-level entity-interaction graphs and select the scene with the
highest matching score. 2) To fill in the graph space, we traverse the
edges of the entity-relation graph, match the interactions where
the predicate and the object are exactly the same, add the subject
to the candidate list, which is sorted by the number of occurrences
of the subject. 3) To find the next or previous interaction, we
divide each scene into smaller acts in chronological order, generate
the interaction sequence between two given entities, and then
judge the next or previous interaction. 4) To match scene with
natural language description,we use WordNet to implement word
lemmatization on descriptions, and match the entities, objects,
interactions and sentiments contained in the given scenes. 5) To
classify scene sentiment, we choose the sentiment with the highest
predicted score as the answer.

4 EXPERIMENTS
4.1 Dataset and Experimental Settings
All the experiments are conducted with E5-2680 v4 2.40GHz 14
cores CPU, 64GB memory and one GeForce RTX 3090 GPU, on the
HLVU dataset [2].

4.2 Few shot learning
In experiments of few shot learning, we evaluate the performance
of sentiment prediction using metric 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , where k means the
number of ground truth sentiments. According to table 1, compared
with the original method of directly calculating feature similarity,
the regression model for predicting emotion score and the method
of introducing sentiment category distribution to loss both have
positive influence. It proves the effectiveness of our improved
measures to few shot learning. It is worth noting that data bias
still has some influence after we examining the predicted results.

4.3 Optical flow feature
As shown in Table 2, we compared the training results using C3D
and I3D by calculating 𝑅𝑒𝑐𝑎𝑙𝑙@50 because interactions will be
sorted by confidence scores while answering queries, and found
that using optical flow feature alone to predict interaction was
the best. The fusion of optical flow stream and rgb stream of I3D
will make the result worse. We think it is on the one hand due
to the difference between action recognition task and interaction
prediction task. In addition, our few shot learning method does not
directly predict categories, but compares feature similarity.

4.4 Video description matching
As shown in Table 3, we compared the results of the multi-modal
video description matching model which is referred to in section
3.4 and the direct matching algorithm by caculating 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 . We
found that the matching algorithm performs better, which means
the complexity of the task requires us to bring in more information
like detected objects of the video. We used object tracking results in

Table 1: Experiments on few shot learning methods.

𝑐𝑜𝑠_𝑠𝑖𝑚 𝑒𝑚𝑜𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒 𝑠𝑒𝑛𝑡𝑖_𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

Recall𝑘 27.5 29.4 29.4

Table 2: Experiments on videomodels, where I3D𝑎𝑣𝑔 represents
avaraging the outputs of rgb stream and optical flow stream,
I3D𝑐𝑜𝑛 represents concatenating the features extracted by both
of the streams.

Model C3D I3D𝑟𝑔𝑏 I3D𝑓 𝑙𝑜𝑤 I3D𝑎𝑣𝑔 I3D𝑐𝑜𝑛

Recall@50 28.8 29.1 33.3 32.8 29.6

Table 3: Experiments on description matching, where model
means our description matching model, mat means direct
matching algorithm, 𝐼 represents matching descriptions with
interactions, 𝐸 represents detected entities, 𝑆 represents senti-
ments, 𝑂 represents objects.

Method model mat𝐼 mat𝐸 mat𝐼+𝑆 mat𝐸+𝑂 mat𝐼+𝑆+𝐸
Recall@𝑘 4.9 4.9 12.1 5.3 12.6 6.8

the help of Centertrack [18] while matching, and the results show
that objects information is necessary.

5 CONCLUSIONS
In this paper, we have improved our previous method [17] in many
aspects, such as few shot learning, optical flow feature, mot and
video description matching. However, due to the characteristics of
small sample and serious bias of data, how to design effective few
shot learning methods is still a big challenge for DVU.
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