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ABSTRACT
Video style transfer aims to synthesize a stylized video that has
similar content structure with a content video and is rendered
in the style of a style image. The existing video style transfer
methods cannot simultaneously realize high efficiency, arbitrary
style and temporal consistency. In this paper, we propose the
first real-time arbitrary video style transfer method with only
one model. Specifically, we utilize a three-network architecture
consisting of a prediction network, a stylization network and
a loss network. Prediction network is used for extracting style
parameters from a given style image; Stylization network is for
generating the corresponding stylized video; Loss network is for
training prediction network and stylization network, whose loss
function includes content loss, style loss and temporal consistency
loss. We conduct three experiments and a user study to test the
effectiveness of our method. The experimental results show that
our method outperforms the state-of-the-arts.
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1 INTRODUCTION
Video style transfer aims to synthesize a stylized video that has
similar content structure with a content video and is rendered in
the style of a style image [25]. Similar to many video processing
tasks, exploration of video style transfer methods is extended from
the research on image style transfer. Recently, image style transfer
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Figure 1: Comparison among different video style transfer
methods. The style image in the first row specifies the
reference style for processing the content video.

methods based on neural networks [4, 10, 33] have demonstrated
exciting performance. However, directly applying these methods
to video style transfer may lead to many problems, such as insta-
bility and almost imperceptible stylization effect, thereby leaving
special challenges to be tackled.

High efficiency, arbitrary style and temporal consistency are
the three key requirements of video style transfer. Specifically,
high efficiency means that the final stylized video is expected
to be generated in real time; arbitrary style highlights that any
style image can be applied without retraining the model; temporal
consistency suggests that consistent stylization effect is required
to be created on adjacent video frames.

To the best of our knowledge, no existing video style transfer
methods can simultaneously satisfy all the aforementioned require-
ments. Some methods [1, 25] can achieve arbitrary style transfer
for videos without introducing obvious jitters, but at low efficiency.
Other methods [7, 11, 15, 21, 27, 28, 31] can process any given
style images at desired speed, but cannot solve the problem of
instability. Although some previous methods [5, 12, 14, 26] succeed
in reducing the time cost for producing stable stylized videos, they
can only capture a limited number of style images, i.e., they need
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to train new models when additional style images are involved. As
shown in Figure 1, the reference style is almost imperceptible on
the stylized video generated by Chen et al. [7]; HuangX et al. [15]
fails to produce stable stylization effect as represented by the sky in
the background; Both Ruder et al. [25] and ours can keep temporal
consistency of the stylized videos.

To address the limitations of the existing video style trans-
fer methods, we propose a novel real-time arbitrary video style
transfer method with a three-network architecture, which can
efficiently produce temporally consistent stylized videos using
arbitrary style images. Figure 2 shows an overview of our method.
Prediction network is trained to predict the parameters of the
style image for conditional instance normalization; stylization
network is a feed-forward network that can efficiently transfer
content video frames to stylized video frames; loss network is used
for training prediction network and stylization network, which
integrates a VGG-19 network [29] pretrained by ImageNet and a
temporal consistency loss. In particular, drawing inspiration from
conditional instance normalization for arbitrary transformation [9,
11, 15] and feed-forward network for temporal consistency [14, 25],
we explore a way of adding conditional instance normalization
to a feed-forward network to transfer video frames without the
assistance of optical flows in the stylization process.

We construct a video style transfer dataset with 350 content
videos downloaded from the Internet and 10,000 style images on
the basis of the Kaggle dataset [18], on which we compare our
method with other typical methods under the criteria of efficiency
and arbitrariness. We also randomly select three content videos
with ground truth optical flows in the Sintel dataset [2] to evaluate
the effectiveness of our method in terms of temporal consistency.
Moreover, we conduct a user study with 2,400 test cases equally
assigned to 30 volunteers. The experimental results show that our
method is superior to the state-of-the-arts.

In summary, our contributions are threefold: (1) We propose
a three-network architecture for real-time arbitrary video style
transfer. (2) We realize arbitrary stylization for videos with a sin-
gle model, which is proved to be very effective. (3) We address the
problem of instability and discontinuity with temporal coherence
preserved among consecutive video frames.

2 RELATEDWORK
2.1 Image style transfer
Image style transfer aims to render a content image in the style
of a style image [16]. Gatys et al. [10] formulate image style
transfer as an optimization problem that encourages the stylized
image to show neural activations of the content image and feature
correlations of the style image within a single neural network.
They use Gram matrices to represent the style of the input image.
Li et al. [23] provide a novel interpretation of neural style transfer,
and explain why Gram matrices could represent style. Yin [33]
extends Gatys’s model to transfer the style from a high resolution
image to a low resolution content image. Chen andHsu [8] propose
a masking out strategy and high-order statistics for content-aware
style transfer. Champandard [4] proposes a content-aware gener-
ative model that utilizes the semantic map that is either manually
annotated or automatically generated to give meaningful control

over the operation of style transfer. Castillo et al. [3] present a
targeted style transfer method for stylizing an object specified
either by the user or a semantic segmentation algorithm with non-
stylized background.

In regard to efficiency, Johnson et al. [17] train feed-forward
networks assisted with a loss network to solve the same optimiza-
tion problem as [10]. Ulyanov et al. [30] propose texture networks
to synthesize textures by a single forward pass. Li et al. [20]
use adversarial generative networks to improve the efficiency of
texture synthesis. In order to avoid compromising generality while
improving efficiency, Li et al. [22] propose to encode multiple
textures in a single generative feed-forward network. Chen et
al. [6] propose StyleBank to explicitly represent various styles by
multiple convolution filters. Dumoulin et al. [9] firstly propose
conditional instance normalization to realize a single and scalable
deep network, which can capture N styles. Zhang et al. [34]
propose a Multi-style Generative Network (MSGNet) to achieve
real-time performance as well as model flexibility.

2.2 Video style transfer
Efficient video style transfer. Ruder et al. [26] train a feed-
forward network with the prior image, i.e., the warped previous
stylized frame, to create stylized videos with a much lower run
time per frame. Huang et al. [14] also train a feed-forward con-
volutional neural network using a smaller number of channels to
accelerate the inference speed. Gupta et al. [12] propose a recurrent
convolutional network to produce video frames without explicitly
computing optical flow, which is feasible to run in real-time. It
should be noted that models of these methods cannot support
arbitrary style transfer. When new style images are needed for
stylization, these methods need to train new models.
Arbitrary video style transfer. As the follow-up study of [9],
Ghiasi et al. [11] train a style prediction network to predict affine
transformation parameters in [9]. HuangX et al. [15] propose adap-
tive instance normalization for real-time arbitrary style transfer
by simply aligning the channel-wise mean and variance of the
content feature maps to those of the style feature maps. Chen et
al. [7] propose a patch-based swap operation for constructing the
target activations in feature space, and then decodewith an inverse
network to generate stylized frames in image space. Shen et al. [27]
propose a style decorator module that can be easily embedded into
an image reconstruction network to render multi-scale stylization
for any given style image in one feed-forward pass. Although
these methods meet the requirement of efficiency and flexibility,
problems such as instability and imperceptible stylization still exist
in the final stylized videos.
Temporally consistent video style transfer. In order to en-
hance the coherence of the stylized videos, Ruder et al. [25]
extend Gatys’s model [10] by taking optical flows into account
and initialize each stylized frame with the warped previous one.
They also introduce a temporal constraint to further strengthen
the continuity of moving objects. On the basis of Gatys’s model,
Anderson et al. [1] apply optical flows to initialize the style transfer
optimization for each stylized frame. However, both methods
are time-consuming in consequence of initialization and gradient
decent procedure to stylize each frame. Chen et al. [5] propose the



Figure 2: An overview of our proposedmethod.The arrows denote the dataflow in the training process. Specifically, the yellow
arrows denote the inputs and outputs of the three networks; the blue arrows denote the parameters transferred among the
networks; the green arrow denotes the estimation process of optical flows.

first end-to-end model for video style transfer, which propogates
short-term consistency to ensure the continuity and stability of the
stylized videos, but at the cost of generality.

3 METHOD
3.1 Overview
We propose a novel video style transfer method for real-time
arbitrary video stylization. The whole framework is shown in
Figure 2. Prediction network extracts style parameters from a
given style image. Stylization network obtains style parameters
from prediction network and stylizes each frame of a content
video to generate the corresponding stylized video. Loss network
is used for training prediction network and stylization network,
whose loss function includes content loss, style loss and temporal
consistency loss. Two adjacent content video frames are required
in the training process, but only one content video frame is
required as the input of the stylization network in the stylization
process.
Training process. We use a style image and two adjacent frames
from a content video as inputs for each training. We first feed the
style image into prediction network to extract style parameters.
We then feed the two adjacent content frames and the extracted
style parameters into stylization network to generate two adjacent
stylized frames. Next, we estimate both forward and backward
optical flows between the two adjacent content frames, which are
used to warp the previous and the subsequent stylized frames,
respectively. Finally, we compare two stylized frames with the
style image and the corresponding content frames to calculate
style loss and content loss. Temporal consistency loss is calculated
by comparing each stylized frame with the warped previous and
subsequent stylized frames. The three losses are weighted and
summed to calculate the total loss, which is then minimized for
the optimization of model parameters of both prediction network
and stylization network.

Stylization process. With adequate training, prediction network
acquires the ability to effectively extract style parameters, and styl-
ization network realizes temporal consistency constraints. There-
fore, when a content video is stylized, only one content frame is
required each time to be fed into stylization network, which allows
parallel processing of all the content frames for efficiency.

3.2 Prediction Network
Arbitrary video style transfer is based on the premise that style
parameters can be extracted from a randomly given style image
in prediction network. Inspired by [11], we use a four-layer pre-
diction network for parameter extraction. To improve training
efficiency, we resize the resolution of the style image to 256×256.
On the basis of Inception-v3 architecture, we then obtain a feature
vector whose channel size and channel number are 17×17 and
768, respectively. Next, we calculate the mean of each channel and
the channel size of the new feature vector is compressed to 1×1.
Finally, the new feature vector passes through two fully connected
layers to obtain a style parameter vector ®𝑆 = {®𝛾𝑠 , ®𝛽𝑠 }. Specifically,
the first fully connected layer is used to reduce the channel number
to 100, while the second fully connected layer is used to increase
the channel number to 2758.

3.3 Stylization Network
According to [9], conditional instance normalization can satisfy
the requirements of arbitrariness and efficiency, which simplifies
the procedure of stylizing each content frame as:

𝑧 = 𝛾𝑠
(𝑧 − 𝜇

𝜎

)
+ 𝛽𝑠 , (1)

where 𝑧 denotes an activation unit and 𝑧 is the tuned activation
unit; 𝜇 and 𝜎 represent the mean and standard deviation of 𝑧,
respectively; 𝛾𝑠 and 𝛽𝑠 are style parameters extracted from any
given style image in prediction network.



Table 1: Stylization network configuration. The convolu-
tional layer parameters are denoted as “conv<kernel size>-
<number of channels>”.

Component Layer Stride Activation
convolutional block conv 9-32 1 relu
convolutional block conv 3-64 2 relu
convolutional block conv 3-128 2 relu

residual block (×5) conv 3-128 1 relu
conv 3-128 1 linear

upsampling block conv 3-64 1 relu
upsampling block conv 3-32 1 relu
convolutional block conv 9-3 1 sigmoid

However, using Equation (1) alone cannot ensure temporal
consistency of the stylized video. Hence, we utilize a 16-layer
stylization network to constrain the mapping from the pixels in
content frames to the activation units. Table 1 lists the configura-
tion of our stylization network.

Inspired by [17], we set the first three components of styliza-
tion network as convolutional blocks. Each convolutional block
includes a convolutional layer, conditional instance normalization
and activation. The next five components are residual blocks [13]
and each residual block contains two convolutional layers. The
following two components are upsampling blocks that use nearest-
neighbor interpolation for upsampling. The last component is also
a convolutional block.

Because reducing the number of channels may cause the degra-
dation of stylization quality, we do not follow the strategy of chan-
nel number reduction in [14]. Moreover, after each convolution
we replace the batch normalization with conditional instance nor-
malization to apply the style parameters extracted from prediction
network to stylization network.

3.4 Loss Network
To optimize the model parameters in both prediction network
and stylization network, we use a loss network with two-frame
synergic training mechanism [14]. Figure 3 shows the procedure
of loss network. We refer to 𝒇 𝒕 as the 𝑡 th frame in a content video;
𝒂 represents a style image; 𝒙𝒕 denotes the corresponding stylized
frame of 𝒇 𝒕 . We feed two adjacent content frames 𝒇 𝒕 and 𝒇 𝒕+1, two
adjacent stylized frames 𝒙𝒕 and 𝒙𝒕+1, together with a style image 𝒂
into the aforementioned VGG-19 network [29], which extracts the
feature maps F𝑙𝑡 , A𝑙 and X𝑙𝑡 with the dimensionality of 𝑀𝑙 × 𝑁 𝑙

from 𝒇 𝒕 , 𝒂 and 𝒙𝒕 in layer 𝑙 .
Similar to [24], the loss function in loss network consists of

content loss, style loss and temporal consistency loss, which is
calculated as follows:

L𝑡𝑜𝑡 = 𝛼L𝑐𝑜𝑛 + 𝛽L𝑠𝑡𝑦 + 𝛾L𝑡𝑒𝑚, (2)

where L𝑡𝑜𝑡 , L𝑐𝑜𝑛 , L𝑠𝑡𝑦 and L𝑡𝑒𝑚 denote total loss, content loss,
style loss and temporal consistency loss, respectively; 𝛼 , 𝛽 and 𝛾
are weight parameters to control the influences of different losses
exerted on stylization effect.

Figure 3: The procedure of loss network. The yellow arrows
denote the inputs of loss calculation; the blue arrows denote
the inputs of VGG-19; the green arrow denotes the warping
process of stylized frames with optical flows.

Content loss. Content loss is used to evaluate the appearance
similarity between content frames and the corresponding stylized
frames. We select relu 4_2 layer from the VGG-19 network as the
content layer and calculate content loss as follows:

L𝑐𝑜𝑛 =
∑

𝑘∈{𝑡,𝑡+1}

𝑀𝑙∑
𝑖=1

𝑁 𝑙∑
𝑗=1

(X𝑙𝑘
𝑖 𝑗 − F𝑙𝑘

𝑖 𝑗 )
2 . (3)

Style loss. Style loss is used to evaluate the appearance similarity
between the style image and the stylized frames.We select relu 1_1,
relu 2_1, relue 3_1,relu 4_1 layers from the VGG-19 network for
style loss calculation:

L𝑠𝑡𝑦 =
∑

𝑘∈{𝑡,𝑡+1}

𝐿∑
𝑙=1

𝜆𝑙

(𝑀𝑙𝑁 𝑙 )2
𝑀𝑙∑
𝑖=1

𝑁 𝑙∑
𝑗=1

(
G𝑖 𝑗 (X𝑙𝑡 ) − G𝑖 𝑗 (A𝑙 )

)2,
(4)

where G𝑖 𝑗 (·) denotes the (𝑖, 𝑗) position of the Gram matrix, which
represents the feature correlation based on inner product, e.g.,
G𝑖 𝑗 (X𝑙 ) = ∑𝑁 𝑙

𝑘=1X
𝑙
𝑖𝑘
X𝑙

𝑗𝑘
; 𝜆𝑙 is a weight threshold with the default

value of 1; 𝐿 is the number of layers, which equals 4.
Temporal consistency loss. Temporal consistency loss is used
for evaluating the coherence between two adjacent stylized frames.
In the training process, we represent the pixel correspondence be-
tween adjacent video frames with optical flows, which is estimated
by Deepflow [32].The time cost of optical flow estimation does not
affect the efficiency of our video style transfer method because it
is only required in the training process.

Similar to [25], We detect the motion boundaries of the current
content frame to obtain the disoccluded regions, i.e., blurring areas
produced by moving objects, and compare the stylized result with



Table 2: The time costs of different methods for stylizing
each video frame in seconds under three resolutions.

Method Resolution Style Temporal
256 512 1024 Consistency

Chen [7] 0.12 1.50 - ∞ no
Ghiasi [11] 0.01 0.03 0.09 ∞ no
Huang [14] 0.01 0.03 0.09 1 yes
HuangX [15] 0.03 0.10 0.38 ∞ no
Johnson [17] 0.01 0.05 0.17 1 no
Li [21] 0.62 1.14 2.95 ∞ no
Ruder [25] 14.91 56.26 524.50 ∞ yes
Ulyanov [30] 0.02 0.05 0.15 1 no
Ours 0.01 0.03 0.10 ∞ yes

the warped previous or subsequent stylized frame in rest regions:

L𝑡𝑒𝑚 =
1

|H𝑡 |
∑

𝑝𝑡𝑖 𝑗 ∈H𝑡

(𝒙𝑡𝑖 𝑗−�̃�
𝑡+1
𝑖 𝑗 )2+ 1

|H𝑡+1 |
∑

𝑝𝑡+1𝑖 𝑗 ∈H𝑡+1
(𝒙𝑡+1𝑖 𝑗 −�̃�𝑡𝑖 𝑗 )

2,

(5)
where H𝑡 denotes the set of pixels that belong to the rest regions
of 𝒇 𝑡 ; 𝑝𝑡𝑖 𝑗 denotes the pixel belonging to H𝑡 in (𝑖, 𝑗); 𝒙𝑡𝑖 𝑗 denotes
the stylized result of 𝑝𝑡𝑖 𝑗 ; �̃�

𝒕
𝒊𝒋 denotes the pixel in the frame warped

from 𝒙𝑡 with forward optical flow, while �̃�𝒕+1𝒊𝒋 denotes the pixel
in the frame warped from 𝒙𝑡+1 with backward optical flow; | · |
denotes the cardinality of a set.

Different from the loss function in [24], our method employs a
two-frame synergic trainingmechanismwith the correspondences
between two adjacent frames considered, thereby achieving tem-
poral consistency.

4 EXPERIMENT
We collected 350 content videos from the Internet, including 266
real content videos (76%) and 84 cartoon videos (24%), with the
lengths varying from 2𝑠 to 20𝑠 . We also clustered the 80,000 style
images in the training set of Kaggle [18] into 10,000 categories
according to their color histograms, and selected the image with
the minimal distance to the cluster center in each category as
our style images. In this way, we constructed a dataset with 350
content videos and 10,000 style images for video style transfer.

4.1 Experiment settings
In the training process, all the video frames as well as the style
images were resized to the resolution of 256×256, and the optical
flows were estimated for each video in advance for improving
training speed. We set 𝛼 , 𝛽 and 𝛾 in Equation (2) as 1, 1e-3 and
1e3 respectively to balance the influences of three losses, and used
Adam [19] for stochastic gradient descent to update the model
parameters. The learning rate was set to 10e-4. We trained our
stylization network with approximately 8 million iterations. In
each training, two adjacent content frames and one style image
were randomly selected as the inputs. It took about 240 hours
for training our stylization network and prediction network. We
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Figure 4: Examples of stylized video frames. Different
stylizaion effects are generated with four style images.

conducted all the experiments on a computer with i7 3.5GHz CPU,
32GB memory and 1080Ti GPU.

4.2 Efficiency study
We compared the efficiency of our method with eight existing
typical methods, including Chen [7], Ghiasi [11], Huang [14],
HuangX [15], Johnson [17], Li [21], Ruder [25] and Ulyanov [30],
on ten randomly selected videos and calculated the average time
cost for stylizing each frame. The results are shown in Table 2.
It should be specified that the time cost of Chen [7] under the
resolution of 1024×1024was not included because its requirement
of GPU memory exceeds that of our computer.

We can see that: 1) In terms of time cost, Ruder [25] is inferior
to other methods by a wide margin under any resolution. 2) Our
method can achieve real-time video style transfer below the reso-
lution of 512×512. It is ascribed to our stylization network, which
allows parallel stylizing of all the content frames with a single
forward pass.

4.3 Arbitrariness study
Our method uses 10,000 style images in the training process. After
adequate training, our model can generate stylized videos with
any given style images. We conducted an experiment to test the
generality of our method with the style images randomly selected
from the test set of Kaggle [18]. Figure 4 shows the results of our
experiment. We can see that the stylized results well represent the
characteristics of the style images while preserving the original
content structure.

4.4 Temporal consistency study
We compared our method with three representative video style
transfer methods, i.e., Ruder [25], Johnson [17] and HuangX [15],
using three content videos randomly selected from the Sintel
dataset [2], which provides ground truth optical flows. We used
Still Life. Apples in a sieve by Pyotr Konchalovsky as the style
image and adopted the temporal consistency error 𝐸𝑡𝑒𝑚 defined
by Huang [14] as Equation (6), which is the average pixel-wise



Table 3: Temporal consistency errors of different methods.
Alley 1, Bamboo 1 and Market 6 are the three corresponding
stylized videos.

Method Alley 1 Bamboo 1 Market 6
Johnson [17] 0.09 0.10 0.15
Ruder [25] 0.03 0.04 0.09
HuangX [15] 0.08 0.09 0.12
Ours 0.06 0.07 0.10

Table 4: User study results of the stylized videos generated
by four methods. content retention, style identifiability,
stability & continuity and like are the evaluation criteria
summarized from the four questions for volunteers.

Method content
retention

style
identifiability

stability &
continuity like

Chen [7] 2358 210 719 286
HuangX [15] 1539 808 109 598
Ruder [25] 1820 1492 2293 1539
Ours 1984 1538 2167 1755

Euclidean color difference between consecutive frames:

𝐸𝑡𝑒𝑚 =

√√√∑𝑇−1
𝑡=1

∑
𝑝𝑡+1𝑖 𝑗 ∈H𝑡+1 (𝒙𝑡+1𝑖 𝑗 − �̃�𝑡𝑖 𝑗 )2

(𝑇 − 1) · |H𝑡+1 |
, (6)

where𝑇 is the total number of frames. It is worth noting that 𝐸𝑡𝑒𝑚
is different from that in Equation (5) because Sintel [2] only offers
forward optical flows.

From Table 3, we can see that in each stylized video, our 𝐸𝑡𝑒𝑚
value is next only to that of Ruder [25]. However, as metioned in
the efficiency study, Ruder [25] consumesmore time to stylize each
video frame than ours.

4.5 User study
We also carried out a user study for quantitative contrast between
our method and three state-of-the-art video style transfer meth-
ods, i.e., Chen [7], HuangX [15] and Ruder [25]. All the stylized
videos were generated using 120 content videos and 20 style
images randomly selected from the aforementioned video style
transfer dataset, composing 2,400 test cases in total. Specifically,
each test case consists of a style image, a content video and four
randomly distributed stylized videos. To ensure the effectiveness
of our comparisons, these five videos were played simultaneously.

Thirty volunteers aged from 18 to 45 (male : female= 1 : 1) were
invited to participate in the user study. The 2,400 test cases were
equally assigned to the volunteers. During the exhibition of the
videos, each volunteer was asked to evaluate each stylized video
by answering four questions: 1) Can you obtain sufficient content
information from the stylized video as compared to the content
video (content retention)? 2) Can you recognize the reference style
from the stylized video (style identifiability)? 3) Do you think the
stylized video is free from jitters (stability & continuity)? 4) Do you
like the stylized video (like)?

Figure 5: Examples of strong rendering in stylized frames
produced by two inappropriate style images. The images in
the first row are four consecutive frames extracted from the
content video that displays a bear walking in a forest.

Table 4 shows the user study results. We can see that: 1) Both
Chen [7] and our models perform very well under the criterion
of content retention. 2) Although some reference styles cannot be
easily rendered on specific content videos, our method still excels
in style identifiability. 3) Ruder [25] and ours are the only two
methods that avoid discontinuity, surpassing HuangX [15] by a
large margin. 4) Judged by the number of likes, our method excels
all other methods. Interestingly, like is slightly higher than style
identifiability for our method. Although the reference styles are
not recognizable in some of our stylized videos, volunteers still
have a favorable attitude toward these videos.

Using inappropriate style images whose structural characteris-
tics are largely different from those of content video frames may
cause strong style rendering. As shown in Figure 5, when a style
image with simple color blocks or abstract patterns is used for
stylization, the original content information is imperceptible in the
final stylized video, i.e., it is hard to distinguish the bear from the
background. Hence, content retention and style identifiability need
to be well balanced in the future work.

5 CONCLUSION
In this paper, we proposed a novel real-time arbitrary video style
transfer method using a three-network architecture, which con-
sists of a prediction network, a stylization network and a loss
network. As far as we know, it is the first method that can
simultaneously satisfy the three key requirements of video style
transfer, i.e., high efficiency, arbitrary style and temporal consis-
tency. We validated the effectiveness of our method by conducting
three experiments and a user study.The experimental results show
that our method is superior to the state-of-the-art video style
transfer methods.
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