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ABSTRACT
Pre-trained video-language models (VLMs) have shown superior
performance in high-level video understanding tasks, analyzing
multi-modal information, aligning with Deep Video Understanding
Challenge (DVUC) requirements. In this paper, we explore pre-
trained VLMs’ potential in multimodal question answering for long-
form videos. We propose a solution called Dual Branches Video
Modeling (DBVM), which combines knowledge graph (KG) and
VLMs, leveraging their strengths and addressing shortcomings.
The KG branch recognizes and localizes entities, fuses multimodal
features at different levels, and constructs KGswith entities as nodes
and relationships as edges. The VLM branch applies a selection
strategy to adapt input movies into acceptable length and a cross-
matching strategy to post-process results providing accurate scene
descriptions. Experiments conducted on the DVUC dataset validate
the effectiveness of our DBVM.
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1 INTRODUCTION
Movies, as a special kind of video, usually containmore complex and
dense semantic as a result of their long duration and the extensive
care taken in the design and editing of all their shots. The Deep
Video Understanding Challenge (DVUC) aims to perform deep
analysis and understanding on movies, including human-centric
interactions and relationships, and the descriptions and sentiments
of movie clips. Specifically, DVUC 2023 requires to answer two
types and five types questions on movie-level and scene-level,
respectively. As compared to the DVUCs in the past years, DVUC
2023 still suffers the challenges in localizing entities and recognizing
relationships between entities in long-form videos, which requires
to fuse multiple modalities of information, such as visual, audio
and speech, and reasoning upon them. Meanwhile, DVUC 2023
firstly describes questions and answer options in natural-language,
which brings in new challenges in question and answer option
understanding.

Recently, pre-trained video-language models (VLMs) attract
much attention for significant performance in high-level video
understanding tasks, such as video question answering (QA) [2, 12]
and video-text matching [3, 4], which derives from their strong
ability in cross-modality content alignment. Nevertheless, current
studies of applying pre-trained VLMs in QA task have many
constraints, e.g., short videos (up to five minutes) and answer
options (up to six words), and single modality (video frame). It
is still uncertain whether pre-trained VLMs can achieve excellent
performance in DVUC, which contains long videos (90 minutes on
average) and answer options (more than ten words) and requires
multi-modality in QA.

In this paper, we propose an integrated method named Dual
Branches Video Modeling (DBVM) to handle the challenges in DVUC
2023. We divide the queries in DVUC 2023 into two categories:
structural queries (Q1 of movie-level and Q1 and Q2 of scene-
level) and non-structural queries (Q2 of movie-level and Q3, Q4, Q5
and Q6 of scene-level). The former has clear language description
and can be answered well with the result of movie structurization,
and the latter cannot be easily answered with the result of movie
structurization and requires more understanding of the description
of both questions and answer options. To structural questions, we
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Figure 1: The framework of the proposed DBVMmethod.

follow the solution in our previous work [13], in which knowledge
graphs (KGs) are pre-constructed on movies or clips, and questions
are answered according to interactions and relationships used to
form the KGs. To non-structural questions, we explore the potential
of pre-trained VLMs by finetuning XClip [4] and Clip4Clip [3] for
description-scene matching and adapting the input of SeViLA [12]
for QA.

The contributions of our work are summarized as follows:
1) We explore the potential of pre-trained VLMs in long-form

video analysis and validate their effectiveness.
2)We design an input selection strategy for SeViLA, a pre-trained

VLM, to handle long-form video analysis in natural-language movie
QA.

3) We design a cross-matching strategy to combine text-to-
video (T2V) and video-to-text (V2T) results of pre-trained VLMs to
improve description-scene matching accuracy.

2 PRELIMINARY
Text-To-Video Retrieval. Clip4clip model [3] firstly applies
CLIP model to text-to-video retrieval task. XClip [4] adapts the
pre-trained language-image models to video recognition directly,
and brings in a cross-frame attention mechanism to exchange
information across frames explicitly. LF-ViLA model [9] uses
multimodal temporal contrastive loss and hierarchical temporal
window attention mechanism to model long-range relationships
and reduce computation cost.

Video Question Answering. Due to its ability of capturing
temporal relationships, LF-ViLA model [9] after fine-tune is ap-
plied in video QA task. MIST [2] decomposes traditional dense
spatialtemporal self-attention into cascaded segment and region
selectionmodules. Visual concepts at different granularities are then
processed efficiently through an attentionmodule. To resolve the sit-
uation uniform frame sampling mismatches partly-relevance about
video input with language query, SeViLA model [12] leverages a
single image-language model to tackle both temporal keyframe
localization and question answering on videos.

3 OUR METHOD
As shown in Figure 1, the queries in DVUC 2023 are divided into
two categories: structural queries and non-structural queries. To

structural queries, which are formulated as <subject, predicate,
object> triplets, we generate KGs for movies and scenes based on
our previous work in DVUC 2022 [13], and perform KG search to
answer these queries. To non-structural queries, which involve only
descriptions, we utilize multiple VLMs, namely Clip4clip [3] and
XClip [4] for video-text matching and SeViLA [12] for QA.

3.1 Structural Query Answering
3.1.1 Multi-modal Feature Extraction. We merge scenes by using
LGSS [7]. Extracting and combining various features (visual, text,
audio, and pose), we use two branches to understand videos:
predicting interactions based on single scene features and predicting
relationships based on features of merged scenes. We use a video
language transformer [11] to learn video-text interactions and
extract features used to train the prediction model.

3.1.2 Knowledge Graph Construction. Features extracted from
the above steps demonstrate the significance of relationships
and interactions among entities, serving as essential elements
for constructing KGs. By fusing and encoding these features,
we compute similarity to target relationships, interactions, and
sentiments, ultimately obtaining triplets comprising entities and
predicates to construct KGs. Given that Q1 of movie-level and
Q1 and Q2 of scene-level exhibit two distinctive characteristics,
including their unique structural forms and close relevance to
specific entities, we solve these queries by traversing KGs generated
for each movie and counting the number of matches to the queries’
descriptions.

3.2 Non-Structural Query Answering
We further divide the non-structural queries into three sub-categories:
1) Q2 ofmovie-level requires to find the best-matched answer option
to a query, which can be solved with video QAmodel; 2) Q5 of scene-
level requires to find the best-matched video to a scene description,
which can be solved with video-text retrieval model; 3) Q3, Q4 and
Q6 of scene-level also requires to find the best-matched answer
option to a query but each answer options can be reconstructed
to a scene description, which can be solved with either video QA
model or video-text retrieval model.

Q2 of Movie-Level. Given the limitation of GPU memory, we
use a coarse-to-fine strategy here. We first feed a query, all answer
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Table 1: Ablation experiments on description-and-scene retrieval queries. We calculate Accuracy on T2V and V2T results with
some combination of mean cross-strategy.MS and CS in subscript denote mean subtraction and cross-strategy, respectively.
The best results in each row are highlighted in BOLD.

𝑋𝐶𝑙𝑖𝑝 𝐶𝑙𝑖𝑝4𝑐𝑙𝑖𝑝
𝑉 2𝑇 𝑉 2𝑇𝑀𝑆 𝑇 2𝑉 𝑇 2𝑉𝐶𝑆 𝑇 2𝑉𝑀𝑆+𝐶𝑆 𝑉 2𝑇 𝑉 2𝑇𝑀𝑆 𝑇 2𝑉 𝑇 2𝑉𝐶𝑆 𝑇 2𝑉𝑀𝑆+𝐶𝑆

CallousedHands 0.50 0.40 0.50 0.60 0.60 0.70 0.60 0.60 0.60 0.70
ChainedforLife 0.60 0.70 0.50 0.70 0.70 0.70 0.60 0.70 0.70 0.70
LibertyKid 0.70 0.80 0.70 0.80 1.00 0.90 0.90 0.90 0.90 0.90
LikeMe 0.60 0.60 0.60 0.70 0.60 0.80 0.80 0.70 0.70 0.80

LosingGround 0.20 0.50 0.40 0.40 0.50 0.40 0.60 0.50 0.70 0.70
All 0.52 0.60 0.54 0.64 0.68 0.70 0.70 0.68 0.72 0.76

options, and a whole movie to SeViLA [12], which is set to output
the best-matched video keyframe and answer to the query. Then, we
replace the whole movie with the movie segment with half previous
scene and half successive scene around the output keyframe, in
which the scenes are provided by DVUC, and feed them to SeViLA
again. The output of SeViLa is treated as the final result of Q2 of
movie-level.

Q5 of Scene-Level. We used Clip4clip [3] with the training
dataset to generate a similarity matrix between 10 descriptions
and 10 scenes. After performing mean subtraction on each T2V
vector in the similarity matrix of the retrieval model, we identified
the T2V results where the descriptions did not share a mapping
scenario with other descriptions. Subsequently, we removed the
corresponding rows and columns containing these results. We then
followed the same process to single out the V2T results and treated
the similarity matrix in a similar manner. We iterated through the
above steps until the similarity matrix could no longer be reduced
in size, and then selected the latest T2V result as the final outcome.
Our cross-matching strategy is based on the obvious fact that if two
or more descriptions select the same scene, their scores would be
at most 0.5 since they cannot both be correct. Moreover, we were
motivated to design this cross-matching strategy by the weakly
dominant position of V2T result and the outstanding performance
of retrieval models on description-and-scene retrieval queries as
shown in Table 1.

Q3, Q4 and Q6 of Scene-Level. While next-and-previous
interaction prediction and sentiment retrieval queries are not
typical video QA queries, they share similar characteristics in
form with video QA. Both QA models and video-text retrieval
models possess the capability to comprehend temporal and semantic
information [9]. Hence, we utilize SeViLA to address next-to-
previous interaction prediction and sentiment retrieval queries. The
motivation behind employing a video QA model for these queries
is their close resemblance to natural language forms. This allows
us to enhance the queries with prompts, such as “immediately” and
“in a short time”, in their descriptions to improve performance and
understanding.

Compared to last year’s approach, the new method incorporates
pre-trained VLMs to tackle non-structural queries, with a primary
emphasis on capturing the semantics of movies and scenes. By
leveraging the enhanced capabilities of these introduced pre-trained

VLMs, the new method demonstrates more effective understanding
and processing of video-related information.

4 EXPERIMENTS
4.1 Dataset and Experimental Settings
We validate our method on the HLVU dataset [1] and the Kinolorber
dataset, totaling 24 movies. Among these, 14 movies are used
for training, five for validation, and five for main task. In DVUC
2023, the evaluation metrics of structural query answering and
non-structural query answering are Mean Reciprocal Rank (MRR)
and Accuracy (Acc), respectively. Specifically, 𝑀𝑅𝑅 is calculated
as𝑀𝑅𝑅 = 1

𝑁𝑇

∑𝑁𝑇

𝑖=1
1

𝑅𝐴𝑁𝐾𝑖
, here 𝑁𝑇 is the number of total queries

and 𝑅𝐴𝑁𝐾𝑖 is the rank of the correct answer in the answer list
of the 𝑖th query; 𝐴𝐶𝐶 is calculated as 𝐴𝑐𝑐 =

𝑁𝐶

𝑁𝑇
, here 𝑁𝐶 is the

number of correct answers.
All experiments are conducted on Xeon 2.40GHz CPU, 64GB

memory and one GeForce RTX 3090 GPU.

4.2 Ablation Study
Due to page limitation, we only present the experiment results
on non-structural query answering, as our improvements through
incorporating pre-trained VLMs has been applied to this aspect.

4.2.1 Description-Scene Retrieval. We divide 10 description-scene
pairs into groups and calculated the 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 score for each group,
as well as the average 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 score across all groups. All the
proposed methods, including mean subtraction, and cross-matching
strategy, were utilized.

To validate effectiveness of each step, we conduct experiments
with different step settings, as shown in Table 1. In the V2T
direction, we observe an increase in the average score. In the T2V
direction, we also achieve an average score increase at each step
of our method, with significant improvements in scores across
all groups. It confirms the reliability of the mean subtraction and
cross-matching strategy we designed.

4.2.2 Comparative experiments on QA and Retrieval models with
different settings. QA model with different parameters. We
configured varying numbers of keyframes to be used in the localizer
module of SeViLA based on different features of sentiment retrieval
queries and next-to-previous interaction prediction queries. As
depicted in Table 2, we calculate 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 of sentiment retrieval
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Table 2: Comparative experiments on sentiment queries. 𝐾𝐹 in subscript denotes number of keyframes. The best results of two
types scene-level queries (Next-and-Previous Interaction Prediction (Q3 and Q4) and Sentiment Retrieval (Q6)) in each row are
highlighted in BOLD, respectively.

Next-and-Previous Interaction Prediction (Q3 and Q4) Sentiment Retrieval (Q6)
𝑋𝐶𝑙𝑖𝑝𝑉 2𝑇 𝐶𝑙𝑖𝑝4𝑐𝑙𝑖𝑝𝑉 2𝑇 𝑄𝐴𝐾𝐹=1 𝑄𝐴𝐾𝐹=2 𝑄𝐴𝐾𝐹=4 𝑋𝐶𝑙𝑖𝑝𝑉 2𝑇 𝐶𝑙𝑖𝑝4𝑐𝑙𝑖𝑝𝑉 2𝑇 𝑄𝐴𝐾𝐹=1 𝑄𝐴𝐾𝐹=2 𝑄𝐴𝐾𝐹=4

CallousedHands 0.25 0.25 0.25 0.25 0.25 0.50 0.50 0.67 0.67 0.67
ChainedforLife 0.25 0.25 0.25 0.25 0.38 0.67 0.67 0.33 0.33 0.17
LibertyKid 0.13 0.00 0.25 0.25 0.38 0.50 0.50 0.50 0.33 0.33
LikeMe 0.13 0.38 0.25 0.25 0.25 0.50 0.50 0.17 0.17 0.17

LosingGround 0.13 0.13 0.75 0.75 0.75 0.50 0.17 0.50 0.50 0.33
All 0.18 0.20 0.35 0.35 0.40 0.53 0.47 0.43 0.40 0.33

query results of QA model with different parameters to evaluate
its performance. We observed a decrease in performance for
sentiment retrieval queries as the number of keyframes increased.
This decline could be attributed to each keyframe containing an
independent sentiment, and combining keyframes with different
sentiments leading to a confused result. Conversely, as shown in
Table 2, we noticed an increase in performance as the number of
keyframes increased for next-to-previous interaction prediction
queries. This observation suggests that multiple keyframes are
more applicable for such queries as they require keyframes from
different timestamps.

Comparison of QA model with Retrieval model. Both QA
and Retrieval models possess the capability to capture temporal
and semantic information, which is why we apply them to both
next-and-previous interaction prediction queries and sentiment
retrieval queries. As indicated in Table 2, the retrieval model exhibits
better performance on sentiment queries, while the QA model
performs better on next-to-previous interaction prediction queries.
We attribute this observation to the retrieval model considering all
frames of the scene, making it unable to determine the duration of
the interaction pair accurately. The QAmodel shows larger variance
as it is unclear how many frames are needed to assess sentiment
accurately.

4.3 Comparison with DVUC 2022
Similar to ablation study, we only present the performance compar-
ison with the methods in DVUC 2022 on non-structural query
answering. As shown in Table 3, our method has resulted in
significant improvements across all these problems compared to
our work in DVUC 2022 [13], that is attributed to the capability of
pre-trained VLMs in capturing semantic relations. However, our
method performs worse than E-VG [8] on Q3 and Q4 of scene-level,
because E-VG extracts timestamp information which is useful in
answering next-and-previous interaction prediction queries. Our
performance is also worse than DVU-SQL [10] on Q5 and Q6 of
scene-level, because DVU-SQL is trained on an external and large
movie dataset to handle movie related task better.

4.4 Discussion
Noise subtask. To address the subtasks with three types of noise,
we denoise on scenes with video noise by clip timestamps with
frame loss directly.

Table 3: Performance comparison with DVUC 2022. The best
and second best results in each column are highlighted in BOLD
and UNDERLINE, respectively.

Scene-Q3 Scene-Q4 Scene-Q5 Scene-Q6
E-VG [8] 0.63 0.69 - -

DVU-SQL [10] - - 1.00 0.61
HERO TVQA [5] 0.21 0.26 0.65 0.19
Graphen [6] 0.25 0.31 0.15 0.14

Nanjing U. [13] 0.29 0.26 0.22 0.14
Ours 0.40 0.40 0.76 0.53

Efficiency. In our previous work [13], feature extraction occu-
pies over 20GB GPU memory and takes about five days to process
a single movie. Its extremely low efficiency leads to the failure in
answering all queries in structural query answering of main task
and subtasks. However, thanks to the pre-trained VLMs, we finish
all non-structural query answering in only one day, significantly
improving the efficiency and feasibility of the method.

5 CONCLUSION
We proposed a novel DBVM method that utilizes pre-trained VLMs
to capture temporal and semantic information from movies and
scenes. Specifically, we analyzed the impact of different parameter
and prompt settings in applying pre-trained VLMs. Moreover,
we designed an input selection strategy for SeViLa and a cross-
matching strategy for XClip and Clip4clip to handle long-form
video analysis and improve description-scene matching accuracy,
respectively. Extensive experiments validated the effectiveness of
our method.
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