

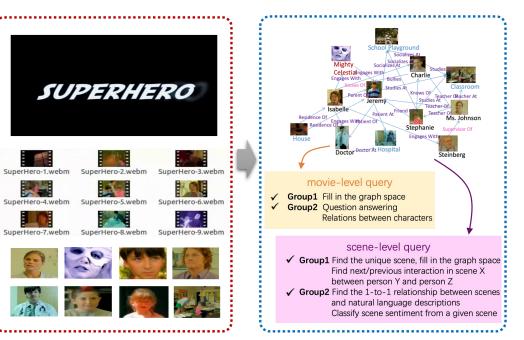
Multimodal Analysis for Deep Video Understanding with Video Language Transformer

¹Beibei Zhang, Yaqun Fang, Tongwei Ren, Gangshan Wu

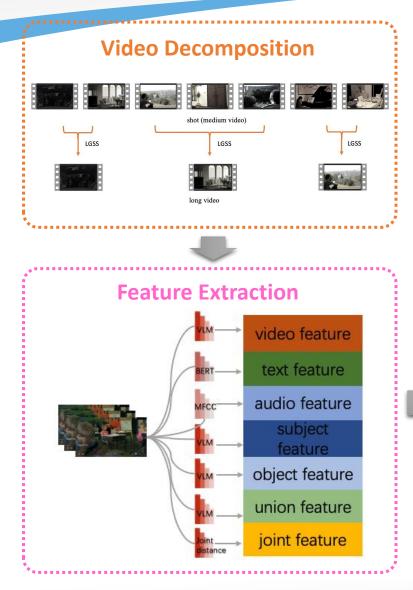
¹State Key Laboratory for Novel Software Technology, Nanjing University

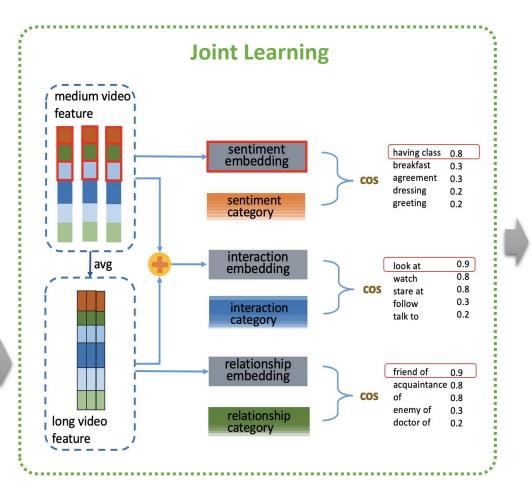
• Deep Video Understanding Challenge (2020 ~ 2022)

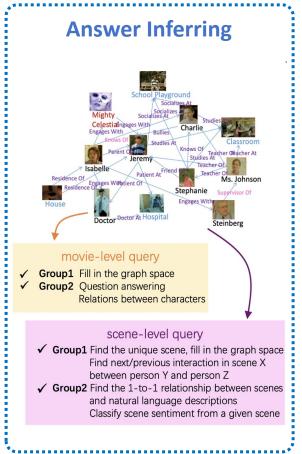
- Movie-level
 - Group 1
 - Find all possible paths question.
 - Group 2
 - Fill in the part of graph question.
 - Multiple choice questions.
- Scene-level
 - Group 1
 - Find the unique scene.
 - Fill in the graph space.
 - Find next interaction in scene X between person Y and person Z.
 - Find previous interaction in scene X between person Y and person Z.
 - Group 2
 - Find the 1-to-1 relationship between scenes and natural language descriptions.
 - Classify scene sentiment from a given scene.



Our Pipeline







Answer Inferring: Movie-level

• Fill in the graph space

• Sort the candidates in the entity-relationship graph according to scores generated by our method

Question answering

- Plug each choice into question and check whether the graph is satisfied
- If none of the choices can fit our graph, choose a reasonable answer based on the types of entities and relationships

Relations between characters

• Collect the paths between two entities by depth-first searching through the graph

Answer Inferring: Scene-level

• Find the unique scene, fill in the graph space

- Interaction knowledge graph
- Find next/previous interaction in scene X between person Y and person Z
 - Split medium video into shot videos
 - Predict the interaction of each shot video
 - The prior knowledge is added to assist in judging the sequence of interactions
- Find the 1-to-1 relationship between scenes and natural language descriptions
 - Match with predicted interactions and sentiments
 - Match descriptions from the scene one by one
- Classify scene sentiment from a given scene
 - Sentiment model prediction result
 - Match video with sentiment directly by VLM

Interaction prediction

- Metric: recall@10
- Component analysis: difference cases using different features and feature combinations for interaction prediction.
- Analysis:
 - The combination of text feature and joint feature performs best
 - Difference among features is large.

	All	Bagman	Manos	RoadToBali	TheIllusionist
V	4.70	3.40	12.70	3.10	2.60
V+P	0.90	1.10	2.60	0.00	0.40
V+T	10.90	9.80	28.0	10.90	4.40
V+T+A	7.00	2.90	16.90	8.00	3.10
V+T+A+P	2.30	1.40	10.10	0.30	0.90
Т	8.50	3.70	24.30	8.50	2.60
T+P	11.30	6.00	27.00	12.40	4.40

V: visual feature; T: text feature; A: audio feature; P: joint feature of poses

Experiments

Sentiment query answering

- Metric: accuracy
- Component analysis: difference cases using different features, different feature extraction models and feature combinations for sentiment query answering.
- Analysis:
 - Only using VLM to extract visual feature to match sentiments performs best.
 - Data limitation makes simple classifier training can not be that effective.

	All	Bagman	Manos	RoadToBali	TheIllusionist
V _{I3D} +T _{Bert}	0.19	0	0.25	0.25	0.25
V _{VLM} +T _{Bert}	0.19	0	0.25	0.25	0.25
V _{VLM} +T _{VLM}	0.19	0	0.25	0.25	0.25
V _{VLM}	0.44	0.25	0.5	0.5	0.5
T_{VLM}	0.25	0.25	0.25	0.25	0.25

V: visual feature; T: text feature; I3D: visual feature extraction model I3D; Bert: text feature extraction model BERT; VLM: visual and text feature extraction model VLM

Leaderboard

- Movie-Level
 - Group1: no rank
 - Group 2: rank 1

Scene-Level

- Group1: rank 3
- Group 2: rank 3

		 -	

Movie-Level Team Rank

Group	Rank 1	Rank 2	Rank 3
Group 1	UZH	N/A	N/A
Group 2	Nanjing Univ.	HERO TVQA	UZH

Scene-Level Team Rank

Group 1E-VGGraphenNanjing Univ.HERO TVQAUZHGroup 2DVU-SQLHERO TVQANanjing Univ.GraphenN/A	Group	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
Group 2 DVU-SQL HERO TVQA Manjing Univ. Graphen N/A	Group 1	E-VG	Graphen	Nanjing Univ.	HERO TVQA	UZH
	Group 2	DVU-SQL	HERO TVQA	Nanjing Univ.	Graphen	N/A

THANK YOU

