

#2754 Heterogeneous Learning for Scene Graph Generation

Yunqing He¹

Tongwei Ren*,1

Jinhui Tang²

Gangshan Wu¹

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
 School of Computer Science, Nanjing University of Science and Technology, Nanjing, China

Scene Graph Generation

Goals

- localize holistic object instances
- recognize their relationships

Challenges

- long-tail data distribution
- sparse samples on triplet categories
- large intra-class variation and high inter-class similarity

Application

- captioning
- retrieval
- visual question answering
- multi-modal dialog

An example of scene graph

Motivation

- Heterogeneity between objects and relationships has not been discussed yet.
- Heterogeneous objects and relation feature spaces can alleviate the large intra-class variation and inter-class ambiguity problem.

Semi-heterogeneous feature representation

Heterogeneous feature representation

(b) Semi-heterogeneous feature representation vs. Heterogeneous feature representation

Related Work

Our Method – Framework

- Initialize relation representation with Feature Transformation Module
- Find possible relation proposals with Link Prediction Module
- Construct heterogeneous object and relation features spaces with Object Prediction Confusion Module
- Propagate the heterogeneity to arbitrary SGG relation predictors with Auto Encoder Module

Our Method – Feature Transformation

- GNN usually suffers from over-smooth problem
- Severe long-tail problem in VG dataset exacerbates the over-smooth problem
- Alleviate over-smooth problem by enhancing each node's original feature

$$x'_{i} = \sigma(\omega_{1} \cdot F_{j \in N(i)}(x_{j})) \begin{cases} F(x) : mean(x), & in HLB \\ F(x) : \sum \frac{e_{j,i}}{\sqrt{d_{j}d_{i}}}x, & in GCN \\ F(x) : \sum a_{i,j}x, & in GAT \end{cases}$$

$$x'_{i} = \sigma(\omega_{1} \cdot F_{j \in N(i)}(x_{j}) + \omega_{2} \cdot x_{i})$$

$$x'_{i} = \sigma(\omega_{1} \cdot F_{j \in N(i)}(x_{j}) + \omega_{2} \cdot x_{i})$$

$$\frac{GCN \quad 3.14 \quad 4.17 \quad 4.83 \quad 23.05 \quad 29.58 \quad 33.54}{GCN+ \ 4.02 \quad 5.45 \quad 6.32 \quad 24.53 \quad 31.47 \quad 35.52}$$

$$\frac{GAT \quad 3.96 \quad 5.35 \quad 6.21 \quad 24.55 \quad 31.41 \quad 35.50}{GAT+ \ 4.06 \quad 5.50 \quad 6.40 \quad 24.38 \quad 31.28 \quad 35.29}$$

$$\frac{HLB \quad 3.96 \quad 5.27 \quad 6.09 \quad 24.36 \quad 31.08 \quad 35.13}{HLB \quad 4.34 \quad 5.87 \quad 6.84 \quad 24.78 \quad 31.79 \quad 35.91}$$

Our Method – Link Prediction

Our Method – Object Prediction Confusion

Relevance between highdimension tensors is difficult in quantification

- make the object and relation features less relative
 Problem Reduction
- make relation features contain minimum object information
 Problem Reduction
- make relation features cannot be used in object recognition

Our Method – Auto Encoder

- Defect of a classifier (only Encoder):
 - Since training two different classifiers simultaneously (classifier from conventional SGG method and that from our HLB method) is difficult, a possible dilemma is both the classifiers tend to generate logits that close to zero (sparse logits) to make the loss value seems to decease.
- Advantage of an Auto Encoder (Encoder + Decoder):
 - The better the prediction logits can be reconstructed, the more information is preserved in the logits. It means that the classifier/Encoder tend to generate dense/non-zero logits.

Experiment Settings

Datasets: Visual Genome (VG-150)

- 108,077 images
- 1,366,673 object instances
- 1,531,448 relation instances
- 108,249 isolated scene graphs
- 150 object categories
- 50 relation categories

Tasks

- Scene Graph Detection
- Scene Graph Classification
- Predicate Classification

Evaluation metrics

- R@N (recall in top-N results)
- mR@N (mean recall over classes in top-N results)
- ng-R@N (no graph-constraint recall in top-N results)
- zR@N (zero-shot recall in top-N results)

Experimental Results – Toy Experiments

Restricted fusion between object and relation features can significantly improves the performance, i.e., heterogeneity between object and relation features is worth noting.

11

MAGUS

MediA recoGnition and UnderStanding

Experimental Results – Comparison Results

			Pre	edCls			SC	Cls			SC	GDet		
	Model	mR@50	R@50	mR@100	R@100	mR@50	R@50	mR@100	R@100	mR@50	R@50	mR@100	R@100	
2	GBNet-β [34]	22.1	66.6	24.0	68.2	12.7	37.3	13.4	38.0	7.1	26.3	8.5	29.9	
	Graph R-CNN [32]	16.4	54.2	17.2	59.1	9.0	29.6	9.5	31.6	5.8	11.4	6.6	13.7	
	ReIDN [38]	15.8	68.7	17.2	68.8	9.3	38.9	9.6	38.9	6.0	31.0	7.3	36.7	
	FCSGG [17]	6.3	41.0	7.1	45.0	3.7	23.5	4.1	25.7	3.6	21.3	4.2	25.1	
	GPS-Net [31]	19.2	69.7	21.4	69.7	11.7	42.3	12.5	42.3	7.4	28.9	9.5	33.2	
RNN-based —	- IMP [29]	9.8	59.3	10.5	61.3	5.8	34.6	6.0	35.4	3.8	20.7	4.8	24.5	
	IMP+HLB	10.63	60.91	11.37	62.95	6.62	38.10	6.98	39.01	4.19	26.67	5.23	31.85	
1	IMP-H	10.17	58.89	10.97	61.31	6.05	34.89	6.47	36.59	5.37	31.21	6.30	35.36	
Heavy-	IMP-H+HLB	10.44	59.43	11.17	61.52	7.07	38.21	7.47	39.09	5.87	31.79	6.84	35.91	
Feature —	VTransE [37]	14.7	65.7	15.8	67.6	8.2	38.6	8.7	39.4	5.0	29.7	6.0	34.3	
	VTransE+HLB	15.26	65.68	16.40	67.60	8.24	39.72	8.74	40.61	5.14	29.74	6.22	34.47	
Knowledge-	- KERN [3]	17.7	65.8	19.2	67.6	9.4	36.7	10.0	37.4	6.4	27.1	7.3	29.8	
based + GNN	KERN+HLB	15.89	61.17	17.15	64.17	9.01	38.16	9.69	39.37	7.11	28.70	8.58	33.41	
Knowledge-	- MOTIFS [36]	14.0	65.2	15.3	67.1	7.7	35.8	8.2	36.5	5.7	27.2	6.6	30.3	
based + RNN	MOTIFS+HLB	15.39	64.91	16.74	66.80	8.90	39.48	9.44	40.32	7.19	32.57	8.43	37.01	
Tree-RNN —	VCTree-SL [24]	17.0	66.2	18.5	67.9	9.8	37.9	10.5	38.6	6.7	27.7	7.7	31.1	
	VCTree-SL+HLB	17.47	65.73	18.79	67.35	11.98	36.95	12.73	38.50	7.46	32.04	8.75	36.34	
GNN-based	BGNN [13]	30.4	59.2	32.9	61.3	14.3	37.4	16.5	38.5	10.7	31.0	12.6	35.8	
	BGNN+HLB	28.20	61.06	30.43	63.22	16.72	35.27	18.09	36.64	12.57	27.80	15.03	32.28	
	0- 4	+1.45%	-0.21%	+0.96%	-0.02%	+11.73%	+4.08%	+10.74%	+4.39%	+12.63%	+8.83%	+14.20%	+10.48%	
	On Average		+0	.54%			+7	.73%			+11.53%			

Comparison with the state-of-the-arts methods

Experimental Results – Quantitative Analysis

Component Analysis

- AD: remove decoder from Auto-Encoder
- LP: remove Link Prediction Module
- GE: remove over-smooth-proof item from GNN

Feature Representation Analysis

Feature representation analysis

	Pred	dCls	SG	Cls	SGDet		
	mR	R	mR	R	mR	R	
	@20	@20	@20	@20	@20	@20	
	@50	@50	@50	@50	@50	@50	
	@100	@100	@100	@100	@100	@100	
	8.04	51.47	5.01	30.37	3.98	24.45	
IMP-H	10.17	58.89	6.05	34.89	5.37	31.21	
	10.97	61.31	6.47	36.59	6.30	35.36	
	7.78	51.67	4.83	30.49	3.90	24.49	
IMP-H-AD	9.67	58.95	5.80	35.00	5.25	31.32	
	10.43	61.38	6.21	36.68	6.14	35.49	
	7.72	51.61	4.76	30.42	4.02	24.44	
IMP-H-LP	9.54	58.94	5.69	34.91	5.38	31.26	
	10.24	61.36	6.09	36.56	6.23	35.39	
	7.76	50.74	4.83	29.85	3.87	23.17	
IMP-H-GE	9.82	58.28	5.85	34.20	5.27	30.03	
	10.66	60.90	6.27	35.80	6.23	34.36	
	8.50	52.73	5.84	34.89	4.34	24.78	
IMP-H-HLB	10.44	59.43	7.07	38.21	5.87	31.79	
	11.17	61.52	7.47	39.09	6.84	35.91	

Component analysis

less inter-class ambiguity

Experimental Results – Qualitative Analysis

- The words marked with green denote the correctly detected objects and relations
- The red words and lines represent the wrongly predicted ones with notated labels in brackets
- The words marked with black color refer to the predicted relations which are considered positive but unlabeled

Qualitative results of the proposed method

Thank You

heyq@smail.nju.edu.cn

