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ABSTRACT
SceneGraphGeneration (SGG) task aims to construct a graph struc-
ture to express objects and their relationships in a scene at a holis-
tic level. Due to the neglect of heterogeneity of feature spaces be-
tween objects and relations, coupling of feature representations
becomes obvious in current SGG methods, which results in large
intra-class variation and inter-class ambiguity. In order to explic-
itly emphasize the heterogeneity in SGG, we propose a plug-and-
play Heterogeneous Learning Branch (HLB), which enhances the
independent representation capability of relation features.TheHLB
actively obscures the interconnection between objects and relation
feature spaces via gradient reversal, with the assistance of a link
prediction module as information barrier and an Auto Encoder for
information preservation. To validate the effectiveness of HLB, we
apply HLB to typical SGGmethods in which the feature spaces are
either homogeneous or semi-heterogeneous, and conduct evalua-
tion on VG-150 dataset. The experimental results demonstrate that
HLB significantly improves the performance of all these methods
in the common evaluation criteria for SGG task.
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(b) Semi-heterogeneous feature representation vs. Heterogeneous feature representation

(a) Homogeneous feature space vs. Heterogeneous feature spaces 
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Figure 1: Feature representations in different feature spaces.
(a) Large intra-class variation and inter-class ambiguity in
Homogeneous feature spaces. (b) Semantic ambiguity be-
tween semi-heterogeneous feature representation.
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1 INTRODUCTION
Scene Graph Generation (SGG) aims to represent objects and their
relationships with a graph structure, which plays a fundamental
role in numerous downstream applications, such as captioning [33],
multi-modal dialog [16] and visual question answering [1]. Tradi-
tional relation prediction [11] treats objects and relations as iso-
lated entities. They only use local contexts in relation prediction,
which is insufficient for formatting comprehensive understanding
of scenes. To fully exploit global contexts, current SGGmethods [2,
15] fuse feature representations of objects and relations, so as to
improve the performance of both object and relation prediction.

However, current SGG methods usually fuse the features of ob-
jects and relations into the same feature space, which may cause
the problem of large intra-class variation and inter-class ambigu-
ity. In addition, co-relative object and relation features may also
result in semantic ambiguity. Figure 1 shows the feature spaces
modeling with different degree of heterogeneity in SGG methods.
As shown in Figure 1(a), if objects and relations are represented
in same feature space, we claim these methods have homogeneous
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feature space. In these approaches, the same predicate like “rid-
ing” varies widely due to distinct objects. Meanwhile, relationships
between same subjects and objects are more likely to generate
approximate representations. These homogeneous approaches are
conducted without any information barrier which prevents mes-
sages from parsing to another feature space. Some other methods,
namely Semi-heterogeneous ones, do not assume that objects and
relations share same feature space. Although some variances are
implicitly produced by these inactivated neurons or blocked infor-
mation channels, relevance still exists between object and relation
feature spaces. As shown in Figure 1(b), inter-class ambiguity is
also allowed. Meanwhile, absurd meaningless associations exist
due to the transitivity of such relevance, e.g., motorcycles and forks
may be relative for their potential relations with person.

To this end, we propose aHeterogeneous Learning Branch (HLB)
to explore the heterogeneity in SGG methods. We analyze the gen-
eral architecture of SGG methods, and summarize three steps for
refining the generation of scene graphs with heterogeneity con-
straints. Firstly, we attempt to construct two independent features
spaces for object and relation representations with Gradient Re-
versal Layer (GRL). The relation features is then confused to pre-
dict object categories by GRL, i.e., object-related information is am-
biguous in relation feature space. Secondly, we design an Auto
Encoder to preserve the relevance information between relation
feature space and probability distribution space. It also ensures
the relation feature space can be constructed in a certain direction
since the number of potential mutual-independent feature spaces
is infinite. Finally, we propagate the heterogeneity to arbitrary re-
lation predictors via a Gaussian mixture modeling assumption. In
order to validate the significance of heterogeneity in SGG task, we
de-homogenize a typical homogeneous method IMP [29] with the
principle of minimum modification, which performs 30%+ better
than previous IMP. We also re-train several SGG methods with
HLB on VG dataset and prove that the performance of relation pre-
diction, especially in Scene Graph Detection (SGDet) task, can be
significantly improved by HLB.

Our contributions can be summarized as: To the best of our
knowledge, we are the first to explore the effect of heterogeneity
in SGG task. We propose a novel Heterogeneous Learning Branch
(HLB), which functions as a lightweight attachment to refine the
performance of mainstream SGG methods. Specifically, we pro-
pose a self-directed relation feature space constructionmethodwhich
simultaneously retains low-relevance and high-relevance with ob-
ject feature space and semantic relationships, respectively. We also
construct a Link PredictionModule in a hierarchical way to predict
potential relationships between detected objects. We conduct ex-
tensive experiments on several modern SGGmethods, and achieve
SOTA performance in VG-150 dataset.

2 RELATEDWORK
2.1 Scene Graph Generation
Research on Scene Graph Generation, in general, can be divided
into four categories or combinations in the aspect of methodology.
Firstly, some researches explore simple and efficient methods with
basic feature transformation and combination inmodel design [17].
Features are extracted by a convolution network and then fed into

a classifier for straightforward relation prediction [26].Thesemeth-
ods usually concentrate on complex feature engineering [18] or
loss function [38]. Secondly, RNN-based architectures take scene
graphs as special sequences for correlation learning [10]. Motifs
directly transforms the graph structure to a linear sequence [36].
Thirdly, GNN-basedmethods are naturally suitable for scene graph
generation [13, 14, 28, 32]. Many modern GNN methods collect in-
formation from neighboring nodes, and are robust to generate un-
seen combinations of relation triplets. It is crucial for SGG since
there are only 4.22% seen triplets even in the largest dataset Visual
Genome. Finally, somemodern strategies in knowledge graph have
been adopted by SGG [37]. The leverage of external knowledge is
also classified into this type for constructing the knowledge graph
from commonsense [27, 35].

We also investigate into some othermodern plug-and-playmeth-
ods for SGG. TDE is an attachment in the inference period of SGG,
which directly manipulates the generated scene graphs [23]. Since
the purpose of this method is to solve the problem of long tail distri-
bution in SGG, substantial reduction in Recall metric is presented,
which means the real-world data distribution is neglected. PUM is
another inference-period tool which optimizes the relation predic-
tion results by whitening the distribution of data [31]. EMB pro-
poses an energy-based model to substitute the Binary Cross En-
tropy Loss [22]. This method is effective but still requires modifica-
tion to original SGG method. In contrast, we propose a heteroge-
neous learningmethod, which can easily improve the performance
by 10%+ without any additional inference cost or any modification
to the framework and network structure of the original methods.

2.2 Heterogeneous Learning
The concept of Heterogeneity is usually used in big-data and real-
world scenario, e.g., Commodity Recommendation System.Most of
the existing Heterogeneous Learning methods for Graph Learning
and Knowledge Graph only deal with undirected graph and few re-
lationship categories, which is not sufficient for SGG. RGCN learns
weighted matrices for each type of nodes [20]. WGCN divides the
overall graph into several weighted sub-graph, and only include
one type of relation in each sub-graph [21]. Recent CompGCN is
the first to learn relation embedding and is, to some extent, capable
of relation prediction [25].

Heterogeneity in SGG consists of twomain types. One is the het-
erogeneity between distinct relations in semantics. For instances,
vtranse classifies relations into verb, spatial-type, preposition, and
comparative [37]. PUM leverages synonymy, hyponymy, andmulti-
view ambiguity to handle the coupling and bias between relations [31].
Another type of heterogeneity in SGG is object-relationship het-
erogeneity, which have not been discussed yet, and therefore faces
more challenges than general heterogeneous learning studies. Gen-
erally, heterogeneous learning aims to control the unbalancedmes-
sage parsing with weighted information fusion between different
types of nodes, and further studies the representations of different
nodes. However, in SGG, there is naturally a strong coupling be-
tween the feature representations of objects and relations, because
the relations themselves are invisible and often need to be com-
puted by using the visual features of the objects. In other words,
the SGG approach is inherently unfriendly to heterogeneity.
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Figure 2: The overview of our method. We leverage visual features of objects (ROI Feature) to construct relation feature space
via Feature TransformationModule.The heterogeneity of relation feature space is guaranteed by Object Prediction Confusion
Module. Link Prediction Module is an auxiliary section for feature transformation, which diminishes the co-relationship
between unrelated objects. An Auto-Encoder is attached following the Feature Transformation Module, including an encoder
to fit the results from conventional SGG models and a decoder to preserve information in relation probabilities.

3 OUR APPROACH
3.1 Problem Setting
A standard Scene Graph is usually acknowledged as a directional
graph G=(O,R), where objects are denoted as O={𝑜𝑖 | 𝑖 ∈ [1...𝑛]}
and relations between objects denoted as R={𝑟𝑖 | 𝑖 ∈ [1...𝑚]}.
Here 𝑛 and𝑚 present the number of object and relation instances
respectively. To be specific, for ∀𝑜𝑖 ∈ O, there exists 𝑜𝑖={𝑏𝑖 , 𝑐𝑜𝑖 |
𝑏𝑖 ∈ R4, 𝑐𝑜𝑖 ∈ C𝑜 }, where 𝑏𝑖 indicates bounding box coordinates,
and for ∀𝑟𝑖 ∈ R, there exists 𝑟𝑖={𝑐𝑟𝑖 | 𝑐𝑟𝑖 ∈ C𝑟 }. C𝑜 and C𝑟 refer to
object and relation categories, respectively. Even though relations
in real-world are of extremely complexity, in usual researches, only
the most ‘salient’ relation will be taken into consideration. In other
words, SGG is modeled as an one-shot problem.

In our research, the heterogeneity constraint is explicitly used
in the progress of scene graph generation. We assume that the het-
erogeneity is mainly expressed in the hidden feature space F other
than the ultimate semantic scene graph G. In other words, prior
knowledge still works in heterogeneous SGG methods. Supposing
that the object and relation feature spaces are respectively repre-
sented as F 𝑜𝑏 𝑗={𝑓 𝑜𝑏 𝑗𝑖 | 𝑖 ∈ [1...𝑚]} and F 𝑟𝑒𝑙={𝑓 𝑟𝑒𝑙𝑖 | 𝑖 ∈ [1...𝑚]},
our objective can be described as for ∀𝑓 𝑜𝑏 𝑗𝑖 ∈ F 𝑜𝑏 𝑗𝑎𝑛𝑑∀𝑓 𝑟𝑒𝑙𝑗 ∈
F 𝑟𝑒𝑙 , and there exists no K = {𝑘𝑖 | 𝑖 ∈ [1...𝑟 ]𝑎𝑛𝑑 ∃ 𝑘𝑖 ≠ 0} that
satisfies:{

𝑓
𝑜𝑏 𝑗
𝑖 = 𝑘1 𝑓

𝑟𝑒𝑙
1 + 𝑘2 𝑓 𝑟𝑒𝑙2 + ... + 𝑘𝑚 𝑓 𝑟𝑒𝑙𝑚 , 𝑖 𝑓 𝑟 =𝑚,

𝑓 𝑟𝑒𝑙𝑗 = 𝑘1 𝑓
𝑜𝑏 𝑗
1 + 𝑘2 𝑓 𝑜𝑏 𝑗2 + ... + 𝑘𝑛 𝑓 𝑜𝑏 𝑗𝑛 , 𝑖 𝑓 𝑟 = 𝑛.

(1)

Briefly, the vectors in one feature space are linearly independent
with any vector set in another feature space.

However, the strict mathematical linearly independence is not
a reachable optimization goal, because the number of features in
the overall dataset is much larger than that of the feature dimen-
sion. Considering that the F 𝑜𝑏 𝑗 is highly related with C𝑜 , we fur-
ther translate the optimization problem to depress the relevance
between the relation features F 𝑟𝑒𝑙 and the object labels C𝑜 . Fi-
nally, we define the heterogeneous learning problem as studying a
relation feature space which has low relevance with object labels.

3.2 Architecture
Conventional SGG framework consists of an object detector and
a relation predictor, and we extend the framework with an Het-
erogeneous Learning Branch (HLB). The overview of our method
architecture is shown in Figure 2.

Generally, an object detector works as the basic backbone net-
work to detect possible objects in scenes, and is usually imple-
mented as a Faster R-CNN network [8, 19]. For fair comparison, we
also adopt the Faster R-CNN pre-trained on ImageNet [4] as our ob-
ject detector. In general, an object detector can provide some useful
object-relative information, including instance-level spatial local-
ization, ROI Features [9], predicted object labels, and also union
features of paired objects. Some methods will further construct di-
verse representations according to these features, e.g., word embed-
ding from object labels and relative spatial features from bounding
box coordinates [6]. For the sake of generality, we only leverage
the ROI Features, which is used in almost every SGG method, as
the input of the HLB.

Furthermore, we select several representative methods as the re-
lation prediction network and integrate them with the HLB to val-
idate the effectiveness of our approach. In the early period of train-
ing, these relation predictorswill generate semi-heterogeneous scene
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graphs. The produced scene graphs are described as mess of rela-
tion triplets < 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡 >. These triplets are col-
lected and grouped by corresponding object instances to fit the cal-
culation result of HLB, so as to learn the heterogeneity constraints.
Finally, the scene graph generation progress is restricted by het-
erogeneity constraints via the HLB attachment.

3.3 Feature Transformation
The purpose of the Feature Transformation Module is to generate
relation representation vectors from visual object information. In
general, the transformation progress from object representations
to relation features can be functioned as follows:

{𝑓 𝑜1 , 𝑓
𝑜
2 , ..., 𝑓

𝑜
𝑛 } ↩→ {𝑓 𝑟1,1, 𝑓

𝑟
1,2, ..., 𝑓

𝑟
𝑛,(𝑛−1) }, (2)

where 𝑓 𝑜𝑖 is the feature vector of 𝑖-th object and 𝑓 𝑟
𝑗,𝑘

is the repre-
sentation of relationship between 𝑗-th and 𝑘-th object. It should be
noted that there exist two latent defects in Eq. (2). Firstly, the cost
of calculation and data storage will grow exponentially with the
number of objects increases. Even though generating relation fea-
ture vector for each object pair seems to be inevitable in common
SGG method, we suppose that it is unnecessary in our HLB frame-
work, because it exactly does not predict relation labels directly.
Secondly, since the 𝑛(𝑛 − 1) relationship features is derived from
less object instances, redundant information is included in the for-
mer ones. For instance, when the region of a person in an image is
pictured as a bounding box, we usually describe the overall behav-
ior like ‘holding and eating on seat’, other than single actions. In
this case, we assume that relation features transformed from object
visual features are appropriate representations of the overall rela-
tionships of corresponding objects. In this way, we re-formulate
the transformation progress as follows:

{𝑓 𝑜1 , 𝑓
𝑜
2 , ..., 𝑓

𝑜
𝑛 } ↩→ {𝑓 𝑅𝑜11 , 𝑓

𝑅𝑜2
2 , ..., 𝑓

𝑅𝑜𝑛
𝑛 }, (3)

where 𝑅𝑜𝑖 means the collection of relationships of 𝑖-th object with
other objects.

According to Eq. (3), we adopt GraphConvolutionNetwork (GCN)
as the implementation of Feature Transformation Module. Graph-
based Deep Neural Networks are often affected by the problem of
over-smooth. Consequently, each graph node tends to share sim-
ilar feature representations with the training proceeding and the
network layers deepening, especially in long-tailed datasets, where
severe biased training progress exacerbates the over-smooth prob-
lem. SGG is a typical long-tailed problem with both biased labels
and biased object-predicate combination. To tackle this problem,
we investigate into the over-smooth-proof formulation of the Fea-
ture Transformation Module. Inspired by [7], we formulate the
message propagation function as follows:

x′𝑖 = 𝜎 (𝜔1 ·mean𝑗 ∈N(𝑖) (x𝑗 ) + 𝜔2 · x𝑖 ), (4)
where x′𝑖 indicates the aggregation result of node x𝑖 . The set of
neighboring nodes of x𝑖 is represented as {x𝑗 | 𝑗 ∈ N (𝑖)}. 𝜔1 and
𝜔2 refer to learnable weights. In Eq. (4), the sub-term of 𝜔2 · x𝑖
is utilized as a over-smooth-proof design. We attempt to prevent
over-smooth by retaining the information characteristics of each
node as much as possible when fusing the messages from neigh-
boring nodes. We also conduct some experiments to validate this
simple but effective design.
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Figure 3: Network Structure of Link Prediction Module

3.4 Link Prediction
In period of Scene GraphDetection, object candidates derived from
the object detector are much more complex and numerous than
those in period of Scene Graph Prediction, in which the locations
and number of objects are restricted. Some GNN-based methods
have noticed that sparse graph connections are beneficial to scene
graph generation, e.g., [32] cuts down rare-appeared edges on the
basis of statistic prior, and [13] leverages a MLP branch to predict
confidence scores of each edge.

We construct a hierarchical Link Prediction Module to diminish
the co-relationship between unrelated objects. We assume that in
a scene graph, the association between an object and other enti-
ties can be observed in a three-levels way. The basic judgment on
whether there is a possible link can be drawn from simply con-
catenating the features of object pairs. However, these concate-
nated pair-wise features may interrelate with each other, e.g., a
person who has high-confident relationship with a motorcycle, is
less likely to be related to food. In addition, the overall scenario
might also affect the concrete relationships of objects.

Given ROI features F 𝑟𝑜𝑖 = {𝑓1, 𝑓2, ..., 𝑓𝑁 }, we firstly calculate
the global context representation for current scene, which consists
of 𝑁 predicted objects. The context F 𝑐 and context probability 𝑒𝑐
is constructed as in Eq. (5), where 𝜔𝑐 is a learnable parameter and
G is a gate fusion function which maps feature vectors to single-
value probabilities.

𝑒𝑐 = 𝐺𝑐 (F 𝑐 ) = 𝐺𝑐 (
∑(𝑓𝑖 )
𝑁

· 𝜔𝑐 ) . (5)

Further, pair-wise embedding features of object 𝑖 and 𝑗 are initial-
ized as follows:

F 𝑝
𝑖→𝑗 = 𝜔𝑒 · (𝑓𝑖 ⊕ 𝑓𝑗 ) . (6)

Another gate fusor is adopted to calculate the probability 𝑒𝑝 , which
indicates whether there should be an edge between object 𝑖 and
𝑗 . Finally, we introduce a self-attention module to analyze the co-
relationship 𝑒𝑎 between each object pair. Since the purpose of gate
fusor is merely a transformation from feature representations in
hidden layer to probability of link existence, a fully connection
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layer with single-digit output is adopted as a simple implementa-
tion. The overall link prediction function is shown in Eq. (7):

𝑃𝑒 = 𝜎 (𝜔l (𝑒𝑐 + 𝑒𝑝 + 𝑒𝑎)), (7)

where 𝜔l works as a global interceptor to determine the approxi-
mate proportion of the number of possible links, and 𝜎 is an acti-
vation function.

3.5 Object Prediction Confusion
The Object Prediction Confusion Module is aimed at confounding
the Feature Transformation Module in the aspect of object predic-
tion. As shown in Figure 4, we leverage a Gradient Reversal Layer
(GRL) to achieve this goal. The GRL is originally proposed for Do-
main Adaptation [5], which simply reverses the gradient in the
period of backwards propagation without any other computation.
In this case, the network layers before GRL are misdirected to op-
posite gradient descent direction. To avoid the risk of destruction
of entire model, the influence of GRL is strictly restricted by gra-
dient detachment, and only the Feature Transformation Module is
confused.

Following the setting of [5], we implement the GRL as Eq. (8):

g′ = −( 2
1 + 𝑒𝑥𝑝 (−𝜖 · 𝑖𝑡𝑒𝑟 ) − 1)g, (8)

where g is the gradient of object predictor in the period of back-
ward propagation, and g′ is used to update weights of the Fea-
ture Transformation Module. The 𝑖𝑡𝑒𝑟 denotes the number of iter-
ation steps in training progress, and 𝜖 is a small number of hyper-
parameter which decides how fast the g′ will be closed to −g. This
formula ensures that the classifier has enough time to achieve bet-
ter classification ability since the early performance of classifier
will not introduce too much noise into the training of the Feature
Transformation Module.

3.6 Auto Encoder
Despite that theObject PredictionConfusionModule has confirmed
the heterogeneity of object and relation feature spaces, the similar-
ity between these calculated feature spaces and their prediction
target distributions is still not constrained. The similarity between
object feature space and the object labels is usually restricted by
a refine object prediction branch in conventional SGG methods.
Thus we leverage a similar relation prediction branch to limit the
relation feature space.This branch is implemented as a three-layers
classifier, i.e., the encoder in an Anto Encoder. Since the relation
feature space is semantically defined as the overall behaviors of
specific object, the output logits of the encoder should be similar
to the sum of relationships of objects. Therefore, the optimization
goal of the encoder is formulated as:

minimize(𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑜𝑖 − (T (𝑃 (𝑜𝑖 ,𝑜1) ) + ... + T (𝑃 (𝑜𝑖 ,𝑜𝑛) ))), (9)

where 𝑃𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑜𝑖 refers to the output logits of 𝑖-th object from the
encoder and 𝑃 (𝑜𝑖 ,𝑜1) is the relation prediction results form conven-
tional SGG methods. T is a threshold function to eliminate low-
confident prediction results.

We also demonstrate thatwhy anAuto-Encoder is adopted other
than a single classifier. Although the relevance between the HLB
and the conventional SGG methods is constrained by the encoder,
some latent problems still exist in the optimization progress. In Eq.
(9), the optimization target can be summarized as 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐴 −
𝐵). However, if the optimization function collapse to the form of
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐴) +𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐵), the value of (𝐴−𝐵) is also minimized
outwardly. We assume that the progress of collapse indicates that
many valuable information is forgotten by the encoder. In this way,
a decoder is proposed to reconstruct the Relation Feature that fed
into the encoder.

3.7 Training Loss
The training loss of our method is deigned as Eq. (10):

L𝑡𝑜𝑡𝑎𝑙 = L +M𝐿 +M𝐶 + N𝐷 + N𝑅, (10)

where the sum of losses of conventional SGGmethods is presented
asL, which is customized by distinct relation predictors.M𝐿 refers
to the link loss of link prediction, andM𝐶 is confusion loss in Ob-
ject Prediction Confusion Module. The loss function M is calcu-
lated as following:

M = −
|Φ |∑
𝑖=1

𝛾𝑖𝑟 log(𝜌𝑖𝑟 ) + (1 − 𝛾𝑖𝑟 ) log(1 − 𝜌𝑖𝑟 ), (11)

where the prediction results 𝑟 is represented with a binary vector
𝛾𝑟 , whose length |Φ| is equal to that of the grounding truth 𝜌 . More-
over, the loss function N calculates the cosine similarity between
prediction results and actual values:

N = 1 − 𝛾𝑖𝑟 · 𝜌𝑖𝑟
| |𝛾𝑖𝑟 | | · | |𝜌𝑖𝑟 | |

, (12)

where N𝐷 and N𝑅 respectively denote the distribution loss of the
encoder and the reconstruction loss of the decoder in the Auto En-
coder.
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4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
SGGmodels are usually evaluated in three tasks, namely Predicate
Classification (PredCls), Scene Graph Classification (SGCls) and
Scene Graph Detection (SGDet). SGDet is the most basic metric
for SGG performance evaluation. It assumes that only raw images
are visible during inference period. In this way, both the object
detector and the relation predictor are confronted with significant
difficulties, and the bond between them should be emphasized. SG-
Cls is proposed for object and relation recognition with provided
object locations. This metric takes into consideration of the object
recognition capability of relation predictor. PredCls eliminates all
effects derived from object detector, which only focuses on the per-
formance of relation prediction with groundtruth objects.

We use Visual Genome-150 (VG) as the benchmark dataset [12],
which is the largest dataset in Scene Graph Research. Although the
VG dataset has been widely used in SGG research, there still exist
many problems about this dataset, e.g., messy annotations, fuzzy
labeling of categories, overlapped bounding boxes and severe long-
tailed distribution of both objects and relations. 108,077 images are
notated in the VG dataset, including 1,366,673 object instances and
1,531,448 pairs of relations in 108,249 isolated scene graphs, along
with about 21 object and 22 relation instances for each image.

Themostwidely accepted evaluationmetrics are Recall@K (R@K)
and Mean Recall@K (mR@K). R@K is introduced from recommen-
dation system research, and aims to evaluate the Recall perfor-
mance of the top-K predicted results. Considering that SGGmodels
are usually affected by long-tailed dataset and biased training pro-
cess, mR@K is proposed to enhance the sensitivity to tailed data.
Conventionally, the setting of K is fixed to 20, 50 and 100.

4.2 Toy Experiments on Heterogeneity
To validate the effectiveness of heterogeneity, we first construct a
de-homogenized method IMP-H from the homogeneous IMP. As
shown in Table 2, IMP-H improves mR by 36.28% and R by 47.55%
compared to the IMP method in average. The concept of IMP-H
construction is shown as following explanation:

IMP is an implicit homogeneous SGGmethod based on RNN [29].
The core computing process of IMP can be summarized as follows
(assuming that 𝜂 = 3):{

F ′
𝑜𝑏 𝑗

= 𝜔𝐺𝑅𝑈
1 · 𝜔𝐺𝑅𝑈

2 · 𝜔𝐺𝑅𝑈
1 · F𝑜𝑏 𝑗 ,

F ′
𝑟𝑒𝑙

= 𝜔𝐺𝑅𝑈
2 · 𝜔𝐺𝑅𝑈

1 · 𝜔𝐺𝑅𝑈
2 · F𝑟𝑒𝑙 ,

(13)

where the complex parameters and computing process of GRU are
simplified to 𝜔𝐺𝑅𝑈 , and 𝜔𝐺𝑅𝑈

1 indicates the parameters of Node
GRU, while 𝜔𝐺𝑅𝑈

2 represents Edge GRU.
IMP-HMoreover, we propose a semi-heterogeneous IMP-H pre-

dictor on the basis of IMP method with minimum changes. This
method de-homogenizes IMP by adopting merely one-character
modification in code and achieve 30%+ improvement in SGDet task.
Compared with Eq. (13), the IMP-H method simply arrange the
message parsing function as follows:

F ′
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝜔𝐺𝑅𝑈

1 · 𝜔𝐺𝑅𝑈
2 · 𝜔𝐺𝑅𝑈

1 · F𝑜𝑏 𝑗 ,
F ′
𝑟𝑒𝑙

= 𝜔𝐺𝑅𝑈
2 · 𝜔𝐺𝑅𝑈

1 · 𝜔𝐺𝑅𝑈
2 · F𝑟𝑒𝑙 ,

F ′
𝑜𝑏 𝑗

= F𝑜𝑏 𝑗 .
(14)

Here, all the GRU units are trained in the same way as in Eq. (13),
but the object embedding F ′

𝑜𝑏 𝑗
is selected as the original F𝑜𝑏 𝑗 .

F ′
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 only works as the context information to assist the re-

lation prediction training progress.

Table 1: Types of some typical SGG baselines

Method Degree of Heterogeneity Implementation
IMP [29] Homogeneous(Implicit) RNN
IMP-H Semi-heterogeneous RNN
VTransE [37] Homogeneous(Explicit) Fully Connection
KERN [3] Semi-heterogeneous Knowledge Graph+GNN
MOTIFS [36] Semi-heterogeneous RNN+Prior
VCTree [24] Semi-heterogeneous Tree-Structured RNN
BGNN [13] Semi-heterogeneous GNN

4.3 Comparisons with State-of-the-Art
Methods

We select several typical methods with distinct characteristics to
validate the HLB approach. As shown in Table 1, we list the core
designs of these baselines, and divide them into approaches with
homogeneous feature spaces and semi-heterogeneous ones.

As shown in Figure 2, some SOTA methods are reported in the
top few lines. In SGDet task, the extended BGNN+HLB method
achieve significant better performance than other SOTA methods.
Even though the BGNN+HLB model is not trained for PredCls and
SGCls task, it still achieve compatible results on both tasks.

Meanwhile, sevenmethods are selected for heterogenizationwith
HLB, including 4 semi-heterogeneous methods, 2 homogeneous
methods and 1 de-homogenized approach. For all semi-heterogeneous
methods, training with HLB shows comprehensive improvement
on all the tasks and evaluation matrices, which demonstrates the
effectiveness of the proposed method.

Moreover, we comprehensively analyze the performance ofHLB
on all the baselines. Considering that semi-heterogeneous and ho-
mogeneous methods can enhance the accuracy of relation predic-
tion via the correlation between object and relation representa-
tions, thesemethods usually performwell with given ground-truth
object information, i.e., in PredCls task. Even though that object
representations are already independent in PredCls, the HLB still
slightly optimize the performance of part methods. However, ob-
ject information is generally not accessible in real-world scenario.
It indicates that object information is unreliable, especially in SGDet
task. Thus, it is crucial to jointly learn more expressive and in-
dependent representations of both objects and relations. Table 2
shows the effectiveness of the HLB in both SGCls and SGDet task.

Finally, we analyze the influence of HLB on feature space. In or-
der to reduce the computational complexity, we obtain the cluster-
center 𝑐𝑖 by averaging all feature vectors for each predicate cate-
gory 𝑖 . As shown in Figure 5(a), HLB increases the similarity in
the same class, which means less intra-class variation. Consider-
ing that the inter-class ambiguity problem is not only related to
the distance between cluster center, but also the degree of intra-
class aggregation 𝐴𝑖𝑛𝑡𝑟𝑎 , we measure inter-class variation 𝑉 𝑖𝑛𝑡𝑒𝑟

with Eq. (15):
𝐴𝑖𝑛𝑡𝑟𝑎
𝑖 = 𝐺𝑐𝑜𝑛𝑓 (𝐹𝑖 ),

𝑉 𝑖𝑛𝑡𝑒𝑟
𝑖, 𝑗 = 2 × 𝑆𝑐𝑒𝑛𝑡𝑒𝑟𝑖, 𝑗 /(𝐴𝑖𝑛𝑡𝑟𝑎

𝑖 +𝐴𝑖𝑛𝑡𝑟𝑎
𝑗 ),

(15)
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Table 2: Comparison Results on Visual Genome Dataset

PredCls SGCls SGDet
Model mR@50 R@50 mR@100 R@100 mR@50 R@50 mR@100 R@100 mR@50 R@50 mR@100 R@100
GBNet-𝛽 [34] 22.1 66.6 24.0 68.2 12.7 37.3 13.4 38.0 7.1 26.3 8.5 29.9
Graph R-CNN [32] 16.4 54.2 17.2 59.1 9.0 29.6 9.5 31.6 5.8 11.4 6.6 13.7
ReIDN [38] 15.8 68.7 17.2 68.8 9.3 38.9 9.6 38.9 6.0 31.0 7.3 36.7
FCSGG [17] 6.3 41.0 7.1 45.0 3.7 23.5 4.1 25.7 3.6 21.3 4.2 25.1
GPS-Net [31] 19.2 69.7 21.4 69.7 11.7 42.3 12.5 42.3 7.4 28.9 9.5 33.2
IMP [29] 9.8 59.3 10.5 61.3 5.8 34.6 6.0 35.4 3.8 20.7 4.8 24.5
IMP+HLB 10.63 60.91 11.37 62.95 6.62 38.10 6.98 39.01 4.19 26.67 5.23 31.85
IMP-H 10.17 58.89 10.97 61.31 6.05 34.89 6.47 36.59 5.37 31.21 6.30 35.36
IMP-H+HLB 10.44 59.43 11.17 61.52 7.07 38.21 7.47 39.09 5.87 31.79 6.84 35.91
VTransE [37] 14.7 65.7 15.8 67.6 8.2 38.6 8.7 39.4 5.0 29.7 6.0 34.3
VTransE+HLB 15.26 65.68 16.40 67.60 8.24 39.72 8.74 40.61 5.14 29.74 6.22 34.47
KERN [3] 17.7 65.8 19.2 67.6 9.4 36.7 10.0 37.4 6.4 27.1 7.3 29.8
KERN+HLB 15.89 61.17 17.15 64.17 9.01 38.16 9.69 39.37 7.11 28.70 8.58 33.41
MOTIFS [36] 14.0 65.2 15.3 67.1 7.7 35.8 8.2 36.5 5.7 27.2 6.6 30.3
MOTIFS+HLB 15.39 64.91 16.74 66.80 8.90 39.48 9.44 40.32 7.19 32.57 8.43 37.01
VCTree-SL [24] 17.0 66.2 18.5 67.9 9.8 37.9 10.5 38.6 6.7 27.7 7.7 31.1
VCTree-SL+HLB 17.47 65.73 18.79 67.35 11.98 36.95 12.73 38.50 7.46 32.04 8.75 36.34
BGNN [13] 30.4 59.2 32.9 61.3 14.3 37.4 16.5 38.5 10.7 31.0 12.6 35.8
BGNN+HLB 28.20 61.06 30.43 63.22 16.72 35.27 18.09 36.64 12.57 27.80 15.03 32.28

On Average +1.45% -0.21% +0.96% -0.02% +11.73% +4.08% +10.74% +4.39% +12.63% +8.83% +14.20% +10.48%
+0.54% +7.73% +11.53%

Table 3: Ablation study on HLB network structure design

PredCls SGCls SGDet
mR R mR R mR R
@20 @20 @20 @20 @20 @20
@50 @50 @50 @50 @50 @50
@100 @100 @100 @100 @100 @100

IMP-H
8.04 51.47 5.01 30.37 3.98 24.45
10.17 58.89 6.05 34.89 5.37 31.21
10.97 61.31 6.47 36.59 6.30 35.36

IMP-H-AD
7.78 51.67 4.83 30.49 3.90 24.49
9.67 58.95 5.80 35.00 5.25 31.32
10.43 61.38 6.21 36.68 6.14 35.49

IMP-H-LP
7.72 51.61 4.76 30.42 4.02 24.44
9.54 58.94 5.69 34.91 5.38 31.26
10.24 61.36 6.09 36.56 6.23 35.39

IMP-H-GE
7.76 50.74 4.83 29.85 3.87 23.17
9.82 58.28 5.85 34.20 5.27 30.03
10.66 60.90 6.27 35.80 6.23 34.36

IMP-H-HLB
8.50 52.73 5.84 34.89 4.34 24.78
10.44 59.43 7.07 38.21 5.87 31.79
11.17 61.52 7.47 39.09 6.84 35.91

Figure 5: Feature Representations analysis

where 𝐹𝑖 represents all the feature vectors of predicate class 𝑖 .𝐺𝑐𝑜𝑛𝑓
is a confidence boundary function to determine the degree of intra-
class aggregation. It reserves 95% credible feature vectors and se-
lects the feature vector with the lowest similarity with the cluster-
center as the aggregation boundary. 𝑆𝑐𝑒𝑛𝑡𝑒𝑟𝑖, 𝑗 is the similarity be-
tween cluster-centers of predicate 𝑖 and 𝑗 .

4.4 Ablation Study
In order to make the results simpler to observe and to mitigate the
complexity, we choose IMP-H as the baseline for ablation study,
which has relatively simpler network structure and more obvious
metrics variation.

Network Design.As shown in Table 3, several significant mod-
ules are removed or modified to validate the network structure de-
sign of the HLB.We first remove the decoder in Auto Encoder mod-
ule, namely IMP-H-AD, which means that less information is pre-
served in the progress of generating low-dimension relation logits.
In general, low-frequency data that have less impact on the over-
all performance are more likely to be discarded, i.e., the long-tail
problem is more prominent. Compared with IMP-H, the IMP-H-
AD performs 3.51%worse in meanmR and 0.27% better in R, which
demonstrates the effectiveness of the decoder.

Further, we remove the Link Prediction Module and initialize
the object graph as a complete graph, namely IMP-H-LP. Within
IMP-H-LP messages will propagate through all other nodes with-
out restriction, which exacerbates the problem of over-smooth in
graph learning. The experimental results in Table 3 show that IMP-
H-LP performs 8.38% worse in mean mR and 1.67% worse in mean
R compared with IMP-H-HLB.

Compared with IMP-H-LP and IMP-H-HLB, another possible
way to alleviate over-smooth is to replace the complete graph with
the ground truths relation edges in training. We also study this ap-
proach with IMP-H-GE. It should be noted that as only ground
facts are utilized for training, a small amount of the data is em-
ployed. Meanwhile, the IMP-H-GE can not deal with the period of
test. As shown in Table 3, the performance of IMP-H-GE is 7.47%
worse in mean mR and 4.03% worse in mean R in comparison with
IMP-H-HLB, which shows slight advantage in mR against IMP-H-
LP but even worse R metric.

Graph Formulation. To validate the effectiveness of the over-
smooth-proof graph formulation of HLB module, we report the
original and re-formulated evaluation results of SGDet in Table 4.
Two modern graph learning networks without such over-smooth
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Figure 6: Qualitative results of our Scene Graph Generation method on VG dataset. The words marked with green denote
correctly detected objects and relations, the red words and lines represent wrongly predicted ones with notated labels in
brackets, and words marked with black color refer to considered positive but unlabeled predicated relations.

Table 4: Results of IMP-H with different graph formulation

SGDet
mR@20 mR@50 mR@100 R@20 R@50 R@100

GCN 3.14 4.17 4.83 23.05 29.58 33.54
GCN+ 4.02 5.45 6.32 24.53 31.47 35.52
GAT 3.96 5.35 6.21 24.55 31.41 35.50
GAT+ 4.06 5.50 6.40 24.38 31.28 35.29
HLB- 3.96 5.27 6.09 24.36 31.08 35.13
HLB 4.34 5.87 6.84 24.78 31.79 35.91

sub-item design are considered for comparison:

𝐺𝐶𝑁 : x′𝑖 = 𝜎 (𝜔
∑

𝑗 ∈N(𝑖)

𝑒 𝑗,𝑖√
𝑑 𝑗𝑑𝑖

x𝑗 ), (16)

𝐺𝐴𝑇 : x′𝑖 = 𝜎 (
∑

𝑗 ∈N(𝑖)
𝑎𝑖, 𝑗𝜔x𝑗 ). (17)

By attaching the over-smooth-proof term, we re-formulate their
propagation functions as follows:

𝐺𝐶𝑁+ : x′𝑖 = 𝜎 (𝜔1𝑥𝑖 + 𝜔2

∑
𝑗 ∈N(𝑖)

𝑒 𝑗,𝑖√
𝑑 𝑗𝑑𝑖

x𝑗 ), (18)

𝐺𝐴𝑇+ : x′𝑖 = 𝜎 (𝜔1𝑥𝑖 +
∑

𝑗 ∈N(𝑖)
𝑎𝑖, 𝑗𝜔2x𝑗 ) . (19)

Meanwhile, we also remove the over-smooth-proof term in the
HLB method for further validation:

𝐻𝐿𝐵− : x′𝑖 = 𝜎 (𝜔 ·mean𝑗 ∈N(𝑖) (x𝑗 )) . (20)

The experimental results in Table 4 show that a simple self-enhance-
ment item can alleviate the over-smooth problem in a shallow graph
network.

Feature Transformation Network Setting. Considering that
GNN is mainly affected by the number of network layers than
CNN, we additionally explore the design of the number of GNN
layers in the Feature Transformation Module from a theoretical
perspective. Since the purpose of SGG is to comprehensively pre-
dict the relationships between objects in the overall scenario, we
expect the information fusion in the Transformation Module to
cover most of the object nodes in the graph. In this case, we ana-
lyze the graph structures in the VG-150 training set.

As shown in Table 5, the analysis is conducted at two levels:
Node-level: What is the number/proportion of nodes that have

the nearest distances of 𝐿 with all other nodes in a same graph.

Graph-level: What is the number/proportion of graphs that the
maximum length of shortest path of all nodes is 𝐿.

Table 5:The shortest path length between object nodes in VG
training set

𝐿 = 1 𝐿 = 2 𝐿 ≥ 3 Avg-L
Node-level 278249 |74.3% 79467 |21.2% 16777 |4.5% 1.31
Graph-level 70795 |65.5% 29519 |27.3% 7759 |7.2% 1.43

The length of shortest path in Table 5 is compiling with Dijk-
stra algorithm. We notice that 95.5% of object nodes can be as-
sociated with others through a distance of no more than 2, and
65.5% + 27.3% = 92.8% scene graphs are fully composed of such
nodes. In other words, a GNN network that can fuse the informa-
tion of neighbor nodes with a distance of 2 is sufficient in the SGG.
The experimental results is shown in Table 6.

Table 6: Results of IMP-H with different number of Graph
Network layers

PredCls
Layers mR@20 mR@50 mR@100 R@20 R@50 R@100
𝐿 = 1 8.04 9.69 10.31 51.32 58.58 60.85
𝐿 = 2 8.50 10.44 11.7 52.73 59.43 61.52
𝐿 = 3 6.95 8.50 9.09 50.53 57.59 59.82

5 CONCLUSION
In this paper, we explored the effect of heterogeneity in SGG task,
and proposed a novel Heterogeneous Learning Branch. The HLB
can be attached to many SGG methods without any additional
inference cost. Inside the HLB, an over-smooth-proof formulated
GNN and a hierarchical Link Prediction module are constructed to
deal with long-tailed distributed data and dense relation proposals.
We applied HLB in seven typical SGGmethods and conducted com-
prehensive experiments to demonstrate the effectiveness of HLB
on VG-150 dataset. The results evidently show that HLB can signif-
icantly improve the performance of the existing SGG methods.
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