
Reproducibility Companion Paper: Visual Relation of Interest
Detection

Fan Yu1,2, Haonan Wang1, Tongwei Ren1,2,∗, Jinhui Tang3, Gangshan Wu1
Jingjing Chen4, Zhenzhong Kuang5

1 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2 Shenzhen Research Institute of Nanjing University, Shenzhen, China

3 School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
4 Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, Shanghai,

China
5 Key Laboratory of Complex Systems Modeling and Simulation, School of Computer Science and Technology,

Hangzhou Dianzi University
{yf,haonan.wang}@smail.nju.edu.cn,rentw@nju.edu.cn,jinhuitang@njust.edu.cn,gswu@nju.edu.cn

chenjingjing.tju@gmail.com,zzkuang@hdu.edu.cn

ABSTRACT
In this companion paper, we provide the details of the reproducibil-
ity artifacts of the paper “Visual Relation of Interest Detection”
presented at MM’20. Visual Relation of Interest Detection (VROID)
aims to detect visual relations that are important for conveying the
main content of an image. In this paper, we explain the file structure
of the source code and publish the details of our ViROI dataset,
which can be used to retrain the model with custom parameters.
We also detail the scripts for component analysis and comparison
with other methods and list the parameters that can be modified
for custom training and inference.

CCS CONCEPTS
• Computing methodologies → Computer vision.

KEYWORDS
Visual relation of interest; visual relation detection; interest propa-
gation network; interest estimation

1 ARTIFACTS DESCRIPTION
1.1 Introduction
We proposed a novel task named Visual Relation of Interest
Detection (VROID) [15] at MM’20 to extract visual relations that
are more semantically important. VROID evolves from the tasks
of Visual Relation Detection (VRD) [5] and Instance of Interest
Detection (IOID) task [14]. Similar to VRD, VROID represents
the detected visual relationships with relationship triplets and
localize the subject and object for each relationship triplet by
bounding boxes; nevertheless, it only focuses on the essential
visual relationships which can describe the main content of an
image, named “visual relation of interest” (VROI). Compared to
IOID, VROID is more challenging because it requires to measure
essentiality of visual relationships rather than that of instances as in
IOID. To tackle the technical challenges of VROID, we proposed an
Interest Propagation Network (IPNet), which contains a Panoptic
Object Detection (POD) module, a Pair Interest Prediction module,
and a Predicate Interest Prediction module. In the IPNet, interest is

*Corresponding author.

propagated from instances to pairs in the Pair Interest Prediction
module and further propagated from pairs to triplets by combining
outputs of pair interest prediction and predicate interest prediction.

The artifacts include the ViROI dataset and the source code of
the IPNet model with variances. The source code is available at
https://github.com/njumagus/VROID, and the related download
links are provided in the README file.

1.2 Dataset

Figure 1: Data format in the json files. (a) The format
of the “train_images_dict.json” and “test_images_dict.json”
file. (b) The format of the “train_images_triplets_dict.json”
and “test_images_triplets_dict.json” file. (c) The format
of the “class_dict.json” file. (d) The format of the “rela-
tion_dict.json” file.

We constructed a ViROI dataset for VROID on the basis of 45,000
images in the IOID dataset [14] and their corresponding captions
in the MSCOCO dataset [4]. After the images without VROIs are
filtered out, the ViROI dataset contains 30,120 images, and is further
divided into the training set (25,091 images with 91,496 VROIs)
and the test set (5,029 images with 18,268 VROIs). The link for
downloading the ViROI dataset is available in the README file.

The data of images and annotations are stored in six json files:
“train_images_dict.json”, “test_images_dict.json”, “train_images_t-
riplets_dict.json”, “test_images_triplets_dict.json”, “class_dict.json”,
and “relation_dict.json”. The data format is shown in the Figure 1.



Specifically, the <image_id> and <instance_id> in Figure 1(a) are
both string values when working as the the keys in json files,
representing the id of an image and an instance, respectively;
the <image_id> and <triplet_id> in Figure 1(b) are both string
values, representing the id of an image and a triplet, respectively;
the <class_id> in Figure 1(c) is a string value, representing the
“class_id” of an object category; the <relation_id> in Figure 1(d)
is a string value, representing the “relation_id” of a predicate
category. Same as that in the IOID dataset, the “category_id” is
not contiguous in the category information provided by MSCOCO,
andwe give a contiguous “class_id” to each category. Figure 2 shows
a visualization example of annotation result in the ViROI dataset.
The VROIs in format of <subject, predicate, object> are listed under
the image, and subjects and objects of the VROIs are labeled with
bounding boxes.

Figure 2: A visualization example of annotation result in the
ViROI dataset.

1.3 Source code structure
The file structure of the source code is shown in the Figure 3, and the
implementation is based on the Detectron2 [10]. The descriptions
of some important folders and files are listed as follows:

• component_analysis_test.sh: executing testing for com-
ponent analysis.

• evaluate.py: performing evaluation with prediction results.
• frequency.sh: executing testing of frequency baseline.
• init_predicate_matrix.py: generating word embedding
matrix.

• main.py: performing training and testing on our model and
the variances.

• configs: containing configuration files.
• detectron2: containing main files for the framework.
– config: containing the python files for configuration
parsing and default values.

– data: containing files for loading data.

Figure 3: Structure of main files.

– checkpoint: containing files for saving checkpoints.
– engine: containing files for running the framework.
– evaluation: containing files for evaluation.
– layers: containing files for functions such as nms, roi_align
and batch_norm.

– model_zoo: containing configuration files for different
models.

– modeling: containing main files for constructing models.
∗ backbone: containing files for network backbone.
∗ meta_arch: containing main model files.
∗ proposal_generator: containing files for proposal gen-
eration.

∗ relation_heads: containing files for modules in IPNet.
· instance_encoder.py: working for instance encod-
ing.

· instance_head.py: working for the instance interest
prediction.

· pair_head.py: working for pair interest prediction.
· predicate_head.py: working for predicate interest
prediction.

· relation_heads.py: class for combining different
interest prediction modules.

· triplet_head.py: working as the triplet interest pre-
diction module of the variance in the component
analysis experiment.

∗ roi_heads: containing files for the panoptic object
detection module.
· box_head.py: class for predicting object bounding
boxes.

· fast_rcnn.py: containing structures for the output
of object detection.

· mask_head.py: class for predicting object masks.
· roi_heads.py: class for combining box and mask
prediction.

∗ anchor_generator.py: class for generating anchors.
∗ box_regression.py: class for box transformation.
∗ matcher.py: class for assigning each predicted element
a ground-truth element.



∗ middleprocessing.py: working for processing inter-
mediate results.

∗ poolers.py: working for ROI pooling.
∗ postprocessing.py: working for processing final re-
sults.

∗ sampling.py: working for sampling labels.
∗ test_time_augmentation.py: working for test-time
augmentation.

– solver: containing files about the optimizer and the
learning rate scheduler.

– structures: containing files that define data structure.
– utils: utilities in the framework.

• fvcore: containing the files in the fvcore, the dependency of
the framework.

• panopticapi: containing the utilities for panoptic segmen-
tation.

• output: containing output files, including log files, predicted
files and saved weight files.

The main class defined in the “panoptic_relation.py” file com-
bines the POD module with the relation modules. The backbone
is defined in the “backbone” folder. The thing predictor and stuff
predictor in the POD module are defined in the “semantic_seg.py”
file and the “roi_heads” folder. The relation modules are defined
in the “relation_heads” folder. The object generated from the POD
module are encoded by the “instance_encoder.py” file and the object
features are then input into the “instance_head.py” file. The features
of object pairs and relation triplets are generated by object features
and input into the “pair_head.py” and the “predicate_head.py” file.

Data loader is built in the “detectron2/data/build.py” file and
the dataset is registered by the “builtin.py”, “register_viroi.py” and
“viroi.py” files. The data are transformed, mapped and rearranged
by the “transforms” folder, the “dataset_mapper.py” and “detec-
tion_utils.py” files.

The “main.py” file contains training and test functions of
the IPNet, as well as panoptic segmentation prediction. We also
integrate the interest score computation in some variances: “triplet
as output”, “output with triplet”, “output without pair”, and “no
instance”.

2 EXPERIMENTS
2.1 Environment Installation
Compared to the original experimental settings in [14], we test
the reproduced code in the following environment with higher
performance hareware and newer version software:

(1) Operating system Ubuntu 18.04 LTS with CPU E5-2680 v4,
GPU 3090, 64GB memory and 1TB free space.

(2) CUDA 11.1 and cuDNN 8.0.
(3) Python 3.8.3with cython==0.29.21, matplotlib==3.2.2, Shapely

==1.7.1, termcolor==1.1.0, yacs==0.1.8, opencv_python==3.4.8.29,
cloudpickle==1.5.0, numpy==1.20.0, pycocotools==2.0.2, iopath==0.1.7,
tabulate==0.8.7, scipy==1.5.0, Pillow==8.1.0, setuptools==41.0.0,
tensorboard==2.4.1, pyyaml==5.4.1.

We provide a docker image for all software dependencies, which
is available for download in the README file.

2.2 Visualization demo
We provide a demo to visualize the result of our IPNet method when
an image is given. The demo script can be performed as follows:
python main . py −− c on f i g < c o n f i g u r a t i o n f i l e
path > −−mode demo −− image_path <image path >
−− v i s i b l e −− v i s i b l e _num <N>
The “N” in the script represents the top-N results.

2.3 Custom training and inference
Themodel parameters defined in the “detectron2/config/defaults.py”
file can be adjusted by a custom configuration file, and some
important parameters as well as their description are shown in
Table 1.

To train the IPNet model, we use the pretrained panoptic
segmentation model with the ResNet101 as backbone. The training
script can be performed as follows:
python main . py −− c on f i g < c o n f i g u r a t i o n f i l e
path > −−mode t r a i n _ r e l a t i o n
The testing script can be performed as follows:
python main . py −− c on f i g < c o n f i g u r a t i o n f i l e
path > −−mode t e s t _ r e l a t i o n

To evaluate the results, the “evaluate.py” file can be performed
with the following script:
python e v a l u a t e . py −− p r ed_ j s on <ou tpu t f i l e
path > −− top_n <K>
The “K” in the script is the same as the “K” in the metric 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 .
Especially, when “K” is 0, the script outputs 𝑅𝑒𝑐𝑎𝑙𝑙@𝜃 , where 𝜃 is
the number of correct relations in the image.

2.4 Experiments in the original paper
For component analysis, we design 9 variances, and the experiments
can be performed as follows:
. / c omponen t _ an a l y s i s _ t r a i n . sh
. / c omponen t _ an a l y s i s _ t e s t . sh
The variances “output with triplet” and “triplet as output” share the
same configuration file “triplet_as_output.yaml” and the outputs of
the two variances are saved in “test_triplet_as_output.yaml.json”
and “test_triplet_as_out-put.yaml_nopair.json” respectively. The
variances “outputwithout pair” and “outputwith instance” share the
configuration file with “our”, which is “our.yaml”, and the results are
saved in “test_our.yaml_no-pair.json” and “test_our.yaml_instance.json”
respectively. The configuration file of variances “only raw predi-
cate”, “no instance”, “no semantics features”, “no locations features”,
and “bce loss” are “only_raw_predicate.yaml”, “no_instance.yaml”,
“no_semantics_fea-tures.yaml”, “no_locations_features.yaml” and
“bce_loss.yaml” respectively and the results are saved in “test_only_
raw_predicate.yaml.json”, “test_no_instance.yaml.json”, “test_no_se-
mantics_features.yaml.json”, “test_no_locations_features.yaml.json”,
and “test_bce_loss.yaml.json” respectively.

For comparison with other methods, the detection results for
the baselines without detector need to be generated with followed
script:



Table 1: Important parameters that can be customized.

Parameter Description Default Value
OUTPUT_DIR The path of the output files from content root. “./output”
DATASETS.TRAIN The dataset for training. “viroi_train”
DATASETS.TEST The dataset for testing. “viroi_test”
INPUT.MASK_FORMAT The format of instance mask. “bitmask”
SOLVER.IMS_PER_BATCH The images of each batch. 1
SOLVER.CHECKPOINT_PERIOD The iteration number for saving a checkpoint. 1000
SOLVER.MAX_ITER The iteration number when stopping training. 120000
SOLVER.BASE_LR The basic learning rate. 0.01
SOLVER.STEPS The iteration numbers for decreasing learning rate. (60000, 90000, 120000)
TEST.DETECTIONS_PER_IMAGE The number of detected instance of each image. 80
MODEL.TRAINABLE The trainable modules. []
MODEL.DEVICE The device used for training. “cuda”
MODEL.META_ARCHITECTURE The python class for meta architecture. “PanopticRelation”
MODEL.WEIGHTS The pretrained model weights.
MODEL.RESNETS.DEPTH The depth of backbone resnet. 101
MODEL.RELATION_HEADS.INSTANCE_NUM The number of instance categories including backbone. 134
MODEL.RELATION_HEADS.RELATION_NUM The number of relation categories including no-relation. 250
MODEL.RELATION_HEADS.RELATION_HEAD_LIST The modules used in the IPNet. [“instance”, “pair”, “predicate”]
MODEL.RELATION_HEADS.RELATION_INSTANCE_ENCODER.NAME The class for instance encoding. “InstanceEncoder1”
MODEL.RELATION_HEADS.RELATION_INSTANCE_HEAD.NAME The class for instance of interest prediction. “InstanceHead14”
MODEL.RELATION_HEADS.RELATION_PAIR_HEAD.NAME The class for pair of interest prediction. “PairHead17”
MODEL.RELATION_HEADS.RELATION_PREDICATE_HEAD.NAME The class for predicate of interest prediction. “PredicateHeadsMFULN45”

python main . py −− c on f i g c o n f i g s /VROID /
Base −Panopt i c −FPN . yaml −−mode t e s t _ p a n o p t i c

We provide the project links of related models of the baselines in the
README file. We use 2 VRD baselines: STA [13] and MFURLN [17],
4 Scene Graph Generation (SGG) baselines: IMP [11], Graph R-
CNN [12], neural motifs [16], and VCTree [9], and 2 baselines using
VCTree, which works best with different salient object detection
as postprocess among the above models: DSS [3] and NLDF [6].
Also, we design 2 baselines using ARNet [1] and MMT [2] for
image captioning with Stanford CoreNLP Dependency Parser [7]
for dependency parsing and DSG [8] for referring relationships.
Especially, we provide a script for the baseline using frequency:

. / f r equency . sh

3 REPRODUCIBILITY EFFORTS
In the original paper, the description of some fields in the provided
dataset is not clear and the software dependency list is not in accord
with the description in README of the code repository. When the
reviewers tried to run the scripts for the experiments, they found
that the required environment is too new for most environments in
use and errors were reported when the “no_instance” experiment
was conducted. The reviewers also suggested that the authors
should provide a visualization application.

In revision, the authors provided more details in the description
of dataset files and conformed the software dependendies described
in the paper and the README in code. The authors also quickly
fixed the problems in the “no_instance” experiment. To make it
convient for more researchers to run the code, the authors added
a description of using custom environment in the README and
provided a script to run the visualization demo. The reviewers ac-
knowledged the efforts of the original authors to provide necessary
corrections during the reviewing process, including adding detailed
description of dataset, fixing minor bugs in the code, as well as
providing convience for other researchers.

In conclusion, two reviewers and the authors worked together
for this companion paper. The revised code now enables third-party
researchers to reproduce the experiments in the original paper and
is customizable for further research on visual relation detection.

4 CONCLUSION
In this paper, we provided the details of the artifacts of the paper
“Visual Relation of Interest Detection” for replication. The artifacts
contain the ViROI dataset and the source code for experiments in
the paper.

ACKNOWLEDGEMENT
This work is supported by National Science Foundation of China
(62072232, 61732007), Natural Science Foundation of Jiangsu Province
(BK20191248), Science, Technology and Innovation Commission
of Shenzhen Municipality (JCYJ20180307151516166), and Collab-
orative Innovation Center of Novel Software Technology and
Industrialization.

REFERENCES
[1] Xinpeng Chen, Lin Ma, Wenhao Jiang, Jian Yao, and Wei Liu. 2018. Regularizing

rnns for caption generation by reconstructing the past with the present. In IEEE
Conference on Computer Vision and Pattern Recognition. 7995–8003.

[2] Marcella Cornia, Matteo Stefanini, Lorenzo Baraldi, and Rita Cucchiara. 2019.
M2: Meshed-Memory Transformer for Image Captioning. arXiv preprint
arXiv:1912.08226 (2019).

[3] Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, and Philip HS
Torr. 2017. Deeply supervised salient object detection with short connections. In
IEEE Conference on Computer Vision and Pattern Recognition. 3203–3212.

[4] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European Conference on Computer Vision. 740–755.

[5] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. 2016. Visual
relationship detection with language priors. In European Conference on Computer
Vision. 852–869.

[6] Zhiming Luo, Akshaya Mishra, Andrew Achkar, Justin A Eichel, Shaozi Li, and
Pierremarc Jodoin. 2017. Non-local Deep Features for Salient Object Detection.
In IEEE Conference on Computer Vision and Pattern Recognition.

[7] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel,
Steven Bethard, and David McClosky. 2014. The Stanford CoreNLP natural
language processing toolkit. In Association for Computational Linguistics System
Demonstrations. 55–60.



[8] Moshiko Raboh, Roei Herzig, Jonathan Berant, Gal Chechik, and Amir Globerson.
2020. Differentiable scene graphs. In IEEE Winter Conference on Applications of
Computer Vision. 1488–1497.

[9] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo, and Wei Liu. 2019.
Learning to compose dynamic tree structures for visual contexts. In IEEE
Conference on Computer Vision and Pattern Recognition. 6619–6628.

[10] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick.
2019. Detectron2. https://github.com/facebookresearch/detectron2.

[11] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. 2017. Scene graph
generation by iterative message passing. In IEEE Conference on Computer Vision
and Pattern Recognition. 5410–5419.

[12] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. 2018. Graph
R-CNN for scene graph generation. In European Conference on Computer Vision.
670–685.

[13] Xu Yang, Hanwang Zhang, and Jianfei Cai. 2018. Shuffle-then-assemble: Learning
object-agnostic visual relationship features. In European Conference on Computer
Vision. 36–52.

[14] Fan Yu, Haonan Wang, Tongwei Ren, Jinhui Tang, and Gangshan Wu. 2019.
Instance of Interest Detection. In ACM International Conference on Multimedia.

[15] Fan Yu, HaonanWang, Tongwei Ren, Jinhui Tang, and GangshanWu. 2020. Visual
Relation of Interest Detection. In ACM International Conference on Multimedia.

[16] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. 2018. Neural motifs:
Scene graph parsing with global context. In IEEE Conference on Computer Vision
and Pattern Recognition. 5831–5840.

[17] Yibing Zhan, Jun Yu, Ting Yu, and Dacheng Tao. 2019. On Exploring
Undetermined Relationships for Visual Relationship Detection. In IEEE Conference
on Computer Vision and Pattern Recognition. 5128–5137.

https://github.com/facebookresearch/detectron2

	Abstract
	1 Artifacts Description
	1.1 Introduction
	1.2 Dataset
	1.3 Source code structure

	2 Experiments
	2.1 Environment Installation
	2.2 Visualization demo
	2.3 Custom training and inference
	2.4 Experiments in the original paper

	3 Reproducibility Efforts
	4 Conclusion
	References

