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ABSTRACT
Video visual relation detection is a meaningful research problem,
which aims to build a bridge between dynamic vision and language.
In this paper, we propose a novel video visual relation detection
method with multi-model feature fusion. First, we detect objects on
each frame densely with the state-of-the-art video object detection
model, flow-guided feature aggregation (FGFA), and generate object
trajectories by linking the temporally independent objects with Seq-
NMS and KCF tracker. Next, we break the relation candidates, i.e.,
co-occurrent object trajectory pairs, into short-term segments and
predict relations with spatial-temporal feature and language context
feature. Finally, we greedily associate the short-term relation
segments into complete relation instances. The experiment results
show that our proposed method outperforms other methods by a
large margin, which also earned us the first place in visual relation
detection task of Video Relation Understanding Challenge (VRU),
ACMMM 2019.
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1 INTRODUCTION
Video visual relation describes dynamic interactions between co-
occurrent objects in video with object trajectory pair and ⟨subject,
predicate, object⟩ triplet, with the ability to provide comprehensive
semantic understanding of video content [11]. It can be utilized
by numerous high level visual-language tasks, such as video
captioning [16], video summurization [18] and video retrieval [7].

Comparing with visual relation detection (VRD) on static im-
age [8], video visual relation detection (VidVRD) is much more
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practical and challenging than VRD. Firstly, the interactions be-
tween objects are dynamic in video, therefore, effective temporal
feature is required for relation recognition. Secondly, the variability
of visual relations over time is another thorny issue, not a problem
though, in static image situations.

To tackle these problems, several well designed models have
been proposed. Shang et al. [11] introduce the first VidVRD
method which adopts a bottom-up strategy. They split videos
into segments with fixed duration and predict visual relations
between co-occurrent short-term object tracklets for each video
segment. Then they generate complete relation instances by a
greedy associating procedure. Tsai et al. [6] proposed Gated
Spatio-Temporal Energy Graph for video relation detection. The
method models the spatial and temporal structure of relations
in video by a fully-connected spatial-temporal graph. It also
utilizes an energy function with adaptive parameterization to meet
the diversity of relations, therefore achieves the state-of-the-art
performance. However, the incomprehensive features utilized by
existing methods still leave room for improvement of performance.

In this paper, we propose a novel video visual relation detection
method explicitly combining spatial-temporal feature and language
context feature, with the assistance of object trajectory detection
model. Since visual relation detection is based on object detection,
our proposed model consists of two modules: object trajectory
detection and visual relation prediction. Figure 1 shows an overview
of the proposed method.

Different to the existing works on video object detection focusing
on per-frame accuracy, we build an object trajectory detection
module combining the state-of-the-art video object detection
model, FGFA [19], Seq-NMS [3] and KCF tracker [5] for trajectory
generation. FGFA is an elaborate object detection model, which
effectively exploits the temporal coherence among consecutive
frames by optical flow guided feature aggregation. Seq-NMS is
a post-procedure, which links object detection results predicted
by FGFA on adjacent frames to generate preliminary trajectories.
Then we use high-speed KCF tracker to refine the trajectories. The
proposed visual relation prediction module adopts similar strategy
as Shang et al. [11] to deal with the temporal variety of relations.
We split relation candidates, i.e., co-occurrent object trajectory
pairs into short-term segments and extract relative location feature
and motion feature as spatial-temporal feature. Next, we embed
identified object categories into high dimensional feature vectors to
encode language context information usingword2vec [9] pretrained
with large scale textual dataset, GoogleNews. Then the spatial-
temporal feature and language feature are fed into two classifiers
which are trained independently. The confidences generated by
the two classifiers are combined linearly to predict the predicates.
Finally, we greedily associate the relation segments into complete
relation instances.
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Figure 1: An overview of the proposed method. The boxes with different colors represent different predicates in the relation
prediction results.

2 PRELIMINARY
2.1 Flow-guided feature aggregation
Flow-guided feature aggregation (FGFA) [19] is an elaborate object
detection method, derived from a classic image object detector
R-FCN [1] for video. It improves the per-frame feature by fusing
nearby features under guidance of dense optical flow [14]. In this
way, the accuracy of detection is significantly improved, since the
intractable problems existed in video detection, such as motion
blur, rare poses, are effectively relieved. FGFA consists of a feature
extraction network [4] and optical flow network [14]. Specifically,
the feature extraction network is applied on individual frames for
per-frame feature maps. The optical flow network estimates motion
between nearby frames and reference frame. The feature maps from
consecutive frames are warped and fused with the reference frame
with motion flow.

2.2 Seq-NMS
Seq-NMS [3] is a post-process procedure for video object detection.
The main purpose of Seq-NMS is to boost the hard detection
instances with rare poses or blurry appearance by exploiting the
temporal coherence in adjacent video frames. Specifically, when
a video sequence and per-frame object detections are given, it
associates the bounding boxes in the same category on consecutive
frames according to their overlaps, to generate trajectories and
to rescore the individual detections. Due to the plain nature of
trajectory generation criterion, we modify and utilize it to generate
short-term preliminary trajectories at a low computing cost. Then
we extend and associate the preliminary trajectories with visual
tracking algorithm.

2.3 KCF
High-speed tracking with kernelized correlation filter (KCF) [5],
the third prize winner in VOT Challenge in 2014, is one of the
most powerful visual tracking algorithm. KCF tracker adopts
discriminative tracking strategy who utilizes circulant matrix to

sample patch and discrete fourier transform to accelerate. The
greatest strength of KCF is that it achieves real time without
compromising its accuracy, particularly the case in short duration.
In this paper, we use KCF tracker to extend the preliminary
trajectories generated by Seq-NMS in a concurrent way and
generate complete object trajectories by further associate the short-
term ones.

3 METHOD
3.1 Object trajectory detection
Object trajectory detection is an essential part of video visual
relation detection model, which determines the ceiling of the
performance. A small number of high-quality trajectory detection
instances are required to avoid combinatorial explosion in relation
candidate generation. To this end, we comprehensively combine
several advanced techniques including video object detection and
visual tracking to solve this problem.

First, we train the FGFA model [19] with ResNet-101 network [4]
as backbone, which is pretrained with ImageNet [2]. Then we
apply the FGFA model to densely detect 300 individual objects
on each video frame. The detections whose confidences are lower
than a threshold are filtered out, which is 0.01 in our experiments.
With filtered per-frame object detections, we are able to generate
short-term preliminary trajectories in association by applying Seq-
NMS [3] at a low computing cost. Since the criterion for association
is simply based on overlap in Seq-NMS, the quality of generated
trajectories is hard to control. Therefore, we make the bounding box
association criterion stricter. Two boxes Bi and Bi+1 categorized as
Ci and Ci+1 on frame i and i + 1 can be associated, if and only if:

(1) they are in the same category, Ci = Ci+1,
(2) the overlap between the two boxes is larger than a threshold,

IoU (Bi ,Bi+1) > α ,
(3) the different between the scales of the two boxes is less than

a threshold, | B
h
i

Bwi
−

Bhi+1
Bwi+1

| < β ,
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Figure 2: Qualitative results on VidOR validation set.

where Bh and Bw are height and width of box B, α is 0.8 and β is
0.3, | · | is absolute value.

After Seq-NMS, we obtain a set of short-term preliminary
trajectories, which may be incomplete. We track both the head and
tail of each preliminary trajectories and try to further associate them
into complete ones. To reduce the processing time, we implement
this procedure in a concurrent way, so that all CPUs can be
thoroughly utilized. Finally, we further filter out the trajectory
instances whose confidences are lower than a threshold (0.05 in our
experiments). Only 20 trajectory instances at most with the highest
scores are reserved for relation prediction.

3.2 Relation instance generation
The proposed visual relation prediction module adopts the similar
bottom-up strategy as Shang et al. [11], which consists of three steps:
relation candidate breaking, predicate recognition on segments and
relation segment association.

For each object trajectory pair, we break the co-occurrent
part into segments with fixed duration, which is 15 frames,
as relation candidate segments. We explicitly combine spatial-
temporal information and language context information extracted
from each segment for predicate prediction. The spatial-temporal
feature consists of relative location feature and motion feature.
The relative location feature, fLoc = [sx , sy , sw , sh , sa ], utilized
by the proposed method is a widely used spatial feature [17]. It
is calculated as follows: sx = x−x ′

w , sy = y−y′

h , sw = log w
w ′ ,

sh = log h
h′ , sa = log h ·w

h′ ·w ′ , where (x ,y,w,h) and (x ′,y′,w ′,h′)
are the box coordinates of subject and object respectively. The
proposed motion feature captures relative location variety over
time between subject and object:

fMot = f eLoc − f sLoc , (1)

where f sLoc and f eLoc is the relative location feature extracted on
the start frame and the end frame of relation candidate segment
respectively. The spatial-temporal feature fST is generated by
concatenating the features mentioned above as [f eLoc , f

s
Loc , fMoc ].

The language context feature fLan is a 1200-D vector, which
is the concatenation of subject and object category embedding
vectors. We use a word2vec [9] model pretrained on large scale
textual data, GoogleNews, for category embedding. It successfully
captures both statistical prior and language context information,
the effectiveness of which has been proved by numerous visual
relation methods [8, 20].

After that, fLan and fST are fed into two independent two-
layered fully-connected neural networks with leaky ReLU [15]
and softmax for predicate prediction, which are trained separately.
The loss function used in training stage is defined as follows:

h =Whθ (f ) + bh , (2)

L = − log so f tmax(Woθ (h) + bo ), (3)

where θ (·) denotes the activation function, f denotes spatial-
temporal feature or language context feature,Wh ∈ R1024×len(f ),
Wo ∈ R50×1024, bh ∈ R1024, bh ∈ R50. In training stage, we
use SGD optimizer with learning rate defaulted at 0.01. We train
the two classifiers respectively for 40 epochs and divide the
learning rate by 10 for each 10 epochs. The connections between
neuron are randomly dropped out by 50 percent in order to
improve the performance. In testing stage, we linearly combine the
confidences, i.e., P(cp | fLan ) and P(cp | fST ), generated by the two
classifiers to predict the predicates:

P(cp | fLan , fST ) = λP(cp | fLan ) + (1 − λ)P(cp | fST ), (4)

where cp denotes predicate category, λ is set to 0.7.
Finally, we generate complete relation instances by greedily

associating the relation segments with same triplet predictions.

4 EXPERIMENTS
4.1 Dataset and experiment settings
In this paper, we use a large-scale video object relation dataset,
VidOR [10] for experiments. The dataset consists of 10,000 user-
generated videos from social media on 80 object categories and
50 predicate categories, densely annotated with object trajectories
and visual relation triplets. The dataset is divided into three parts:
7,000 for training, 835 for evaluation, 2,165 for final testing. The
average length of the videos in VidOR is 35.73 seconds, which is
much longer than that of ILSVRC-VID dataset. The large scale of
the dataset poses great challenge on both prediction accuracy and
computing effectiveness.

We use Recall@50, Recall@100, tagging precision@1, tagging
precision@5 and mAP for evaluation, in which mAP is the of-
ficial metric used in VRU Challenge. To match a predicted rela-
tion instance(⟨s,p,o⟩p , Tps ,T

p
o ) and groundtruth instance(⟨s,p,o⟩д ,

T
д
s ,T

д
o ), the following requirements should be satisfied:

(1) the triplets are exactly same, ⟨s,p,o⟩p = ⟨s,p,o⟩д ,



Table 1: Component analysis results on VidOR validation set.

method tagging precision@1 tagging precision@5 Recall@50 Recall@100 mAP
Ours\KCF 50.21 40.34 5.49 6.72 5.27
Ours\Lan 43.75 35.32 6.00 7.60 4.95
Ours\ST 50.84 40.41 6.66 8.64 6.33
Ours 51.20 40.73 6.89 8.83 6.56

Table 2: Comparison with the state-of-the-arts on VidOR validation set.

method tagging precision@1 tagging precision@5 Recall@50 Recall@100 mAP
OTD+CAI 48.31 38.49 6.19 8.16 5.65

OTD+GSTEG 51.20 37.26 6.40 8.43 5.58
Ours 51.20 40.73 6.89 8.83 6.56

(2) vIoU (T
p
s ,T

д
s ) >= 0.5 and vIoU (T

p
o ,T

д
o ) >= 0.5, where vIoU

refers to the volume intersection over union [12, 13],
(3) ovpд ≤ ovpд′ , where д′ indicates any mismatch groundtruth

instances, ovpд = min(vIoU (T
p
s ,T

д
s ),vIoU (T

p
o ,T

д
o )).

4.2 Component analysis
The proposed method consists of two essential parts including
object trajectory detection and relation prediction. We analyze the
two modules respectively on VidOR validation set.

Object trajectory detection. We combine FGFA [19] and
Seq-NMS [3] to generate preliminary object trajectories and
refine the results by applying KCF tracker [5]. To prove the
effectiveness of the refinement procedure, we construct a degraded
implementation without tracking as baseline (Ours\KCF). Table 1
indicates the performance of the baseline and the proposed method.
In comparisonwithOurs andOurs\KCF, Recall@50 and Recall@100
decrease by 1.17% and 1.92% respectively. The experiment results
prove that the tracking and the association process introduced
in Sec 3.1 effectively improve the integrity of object trajectory
detection results and further boost relation detection performance.

Relation prediction. Relation prediction relies on spatial-
temporal feature and language context feature in our proposed
model, encompassing complementary information. To illustrate
the effectiveness of the two types of features, we construct two
variations from the proposed model. (1) Ours\ST eliminates spatial-
temporal stream and predicts predicate with language context
stream only. (2) Ours\Lan eliminates language context stream and
utilizes spatial-temporal stream only. The evaluation results are
shown in Table 1. Both Ours\ST and Ours\Lan are inferior in
performance than Ours. The results illustrate that both spatial-
temporal information and language context information improve
the recognition accuracy. The superiority of Ours\ST’s performance
over that of Ours\Lan leads to the conclusion that language context
information plays a vital role in the proposed model.

4.3 Comparison with state-of-the-arts
To evaluate the effectiveness of the proposed method, we construct
two baselines with the state-of-the-art visual relation detection
methods on image and video respectively. CAI [20] is one of the
most well-known visual relation detection models on static image.
By proposing a context-aware relation recognition model boosted
with attentionmechanism, it achieves outstanding performance.We
replace the relation prediction module of our proposed framework

Table 3: Component analysis results on VidOR test set.

method tagging precision@5 mAP
RELAbuilder 23.60 0.546

Ours 42.10 6.310

with CAI model to construct a video relation detection baseline
(OTD+CAI). GSTEG [6] is a novel visual relation recognition
method on video. We extend GSTEG with our object trajectory de-
tection module to meet the requirements of video relation detection
task and construct another state-of-the-art baseline (OTD+GSTEG).
We compare the performances using Vidor validation set, the
experiment results is indicated in Table 2. It shows that the proposed
method outperforms all the state-of-the-art baselines on most of the
evaluation metrics. Despite its satisfying performance in VRD task,
CAI [20] is still unable to overcome the difficulties in VidVRD task
without the assistance of temporal feature. GSTEG [6] exploits
spatial-temporal structure of relations in video, but the model
only utilizes visual feature for predicate recognition, leaving room
for improvement. Compared with the baselines, the multi-model
feature used by the proposed model is more feasible for dynamic
relation recognition. Figure 2 provides some qualitative results
generated by the proposed method.

Table 3 indicates the evaluation results on the test set of VidOR
dataset. Our method is superior than the method comes second by
a large margin.

5 CONCLUSION
We introduced a novel visual relation detection method on video,
which consists of an object trajectory detection module and a
visual relation prediction module. Specifically, the object trajectory
detection module comprehensively combines FGFA, Seq-NMS and
KCF tracker. The visual relation prediction module, on the other
hand, adopts bottom-up strategy and recognizes relation with multi-
model feature. The experiment results indicate that our superiority
over the state-of-the-art baselines and other solutions competed
in visual relation detection task of Video Relation Understanding
Challenge.
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