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ABSTRACT

In this paper, we propose a novel task named Instance
of Interest Detection (IOID) to provide instance-level user
interest modeling for image semantic description. IOID
focuses on extracting the instances which are beneficial to
represent image content, while other related tasks such as
saliency analysis, attention model and instance segmentation
extract the regions attracting visual attention or with
a predefined category. To this end, we propose a Cross-
influential Network for IOID, which integrates both visual
saliency and semantic context. Moreover, we contribute the
first dataset IOID evaluation, which consists of 45,000 images
from MSCOCO with manually annotated instances of interest.
Our method outperforms the state-of-the-art baselines on
this dataset.
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1 INTRODUCTION

As the English idiom goes, A picture is worth a thousand
words. It is true in real life as pictures demonstrate their
superiority over mere descriptions in their richness in
information. The same could be said in our research. As
shown in Figure 1, the original image illustrated in the
top-left contains a women, a girl, a pizza, two forks, two
knives, a table, a watch, a ring, and even more than ten
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Figure 1: Comparison of IOID with the relevant
tasks. The top-left illustrates the original image, and
the rest illustrates the results of fixation prediction,
salient object detection, attention module, instance
segmentation, IOID and captioning, respectively.

persons with four cups and a book in the background. But
the above description rarely appears in our daily life because
it is flooded with details, even those of little interest to
others. Not all the instances share the same importance
in representing the content of the picture (as shown in
the captioning results in Figure 1). Instances with greater
appeal are called “Instance of Interest” (IOI). IOI can be
treated as a specific kind of Region of Interest (ROI) from a
broader sense. From a narrower perspective, the definition
we adopt in this paper are: “region” in ROI is comparable to
“instance”, covering both thing and stuff, and the “interest” is
restricted to the appeal when describing images. Obviously,
there is little room for doubt that IOIs are the fundamental
elements for image understanding. Their interactions and
themselves form the backbone of image description, which can
be applied in various image understanding applications, such
as image captioning [6, 10, 34, 36, 37] and visual question
answering [2, 21].
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A similar concept to IOI is saliency. Saliency analysis starts
from fixation prediction, which aims to predict the regions
people may pay attention to in viewing a picture. Later,
salient object detection is proposed, which aims to generate
the saliency maps or even extract the whole salient objects [5,
31, 38]. In a nutshell, both fixation prediction and salient
object detection focus on exploring what people may watch
in viewing images rather than concern in describing images.
Hence, most saliency analysis methods derive information
from the characteristics of human vision system with little
consideration for semantic cues.

Another related task to IOI detection is instance segmen-
tation, which aims to segment the instances belonging to
the specific categories. The instance category set should be
predefined and remain the same, and it will not be suitable
for the images containing objects of extremely different
types. In IOID, the “interest” of instances with the same
category may vary greatly in different images, even in the
same image. Hence, instance segmentation cannot be used
to detect IOIs. Some relevant techniques, such as semantic
segmentation [4, 25, 39, 40] and scene parsing, focus on pixel-
level semantic labeling rather than modeling user interest,
and they cannot provide instance-level decomposition results.

Moreover, to modeling user interest, attention mechanism
is widely used in deep networks for image understanding appli-
cations, e.g., image captioning and visual question answering.
In attention module, some pixels will affect the caption words
or answers of the question. Although semantically-influential
pixels would be picked out by attention module, the results
are often so vague and broad that the area may include more
than one object.

Based on the above observation, we propose a novel task
named Instance of Interest Detection (IOID) to extract the
IOIs from the given images. Figure 1 shows the comparison
between IOID and the relevant tasks. We can see that
IOID has the following characteristics: 1) IOID represents
the detected IOIs at instance-level, which is different from
fixation prediction, salient object detection and attention
module; 2) Contrary to instance segmentation, IOID only
retains the instances concerned in image descriptions; 3) IOID
provides the semantic label together with the corresponding
segmentation region for each IOI, which is different from
captioning.

We propose a IOID method based on the Residual Network
(ResNet) and Feature Pyramid Network (FPN). The feature
maps are then used for panoptic segmentation and object of
interest selection. Since the objects of interest aim to convey
the content of an image, the segmentation branch needs to
export both things and stuff in the image. On the level of
instance, the objects influence each other in a RNN and those
of higher significance are picked out.

There is no existing dataset for IOID as of today. Hence,
we construct a IOID dataset on the basis of MSCOCO
dataset [29]. We labeled the images based on caption and
panoptic segmentation annotations and removed some images
that are hard to be annotated accurately.

Our contributions mainly include:

∙ Proposal of a novel IOID task that aims to detect the
instances of interest in describing a given image by
providing their segmentations and semantic labels.

∙ Proposal of an IOID method which detects the IOIs
through a Cross-influential Network composed of
a detection and segmentation module, an interest
estimation module and an instance of interest selection
module.

∙ The first IOID evaluation dataset consisting of 45,000
images with manually labeled IOIs.

The rest of the paper is organized as follows. In Section
2, we survey the related works, including visual saliency,
visual attention mechanism, object detection and image
segmentation, and visual relation detection. In Section 3,
we introduce the first dataset for the IOID task. Next, we
explain the details of the proposed methods in Section 4 and
present the results and analysis of our experiments in Section
5. Section 6 is the conclusion of our research.

2 RELATED WORKS

Visual Saliency. Visual saliency has received attention for
many years. Some researchers have contributed to saliency
prediction, under the principle to form a saliency map to
represent the salient intensity of different pixels. Some have
devoted their efforts to salient object detection, with the
principle of highlighting the salient object regions in images.

Though the origin of saliency prediction was much earlier
than salient object detection, they share the same starting
point-analysis of low-level features (such as color, texture,
localization and shape [13, 16]), which provide valuable
information to human visual system. Meanwhile, fixation
prediction [8, 12] which aims at identifying human’s fixation
points plays an important role during the development
of visual saliency. Especially after the proposal of deep
learning solutions, the fixation of human viewers often act as
the ground truth of saliency prediction [24]. An example
is the SALICON dataset [17]–whose images come from
MSCOCO [29]–which provides the fixation data of each
image, and is now widely used in research on visual saliency.
At the same time, deep learning has significantly improved
the performance of visual saliency [33]. In recent years, with
the development of image semantic segmentation and object
proposal, the solutions of salient object detection gradually
transfers from pixel-level to instance-level [9, 26].

Image Captioning. In the field of visual information
understanding, image captioning and image visual question
answering are two important tasks. With the development of
neural network, image captioning solutions draw lessons from
machine translation [7] and translate the image from visual
representation to language [34]. Image question answering
bears resemblance to image captioning, the former, however,
differs in that the question is given and the answer is inferred
by learning the question text and relevant visual information.
As mentioned in the saliency part, the MSCOCO dataset
also provides data about image captioning. Meanwhile, an



important dataset about image question answering named
VQA [2] is constructed on the basis of MSCOCO.

Attention Mechanism. Attention Mechanism was pro-
posed long time ago, but it started to become popular
after [35] was published. In this paper, they add the
attention mechanism to a recurrent model to classify images.
After that, attention mechanism is used widely in natural
language processing to perform translation and alignment
simultaneously and helps to overcome difficulty in translation
of long sentences. Inspired by machine translation, researchers
applied attention mechanism in computer vision again. In [37],
attention mechanism is used to add visual information to
sequence generation in image captioning. The attention
module introduces visual features to language parsing rather
than the entire image embedding from the fully connected
layer of a deep CNN.

Object Detection and Image Segmentation. Object
detection aims to identify different things in the image. The
most popular method to detect objects is to generate a large
number of region proposals and predict the category probabil-
ity of each region. In further research, instance segmentation
was proposed on the basis of object detection [14] [15].

The target of semantic segmentation is to align a category
label to each pixels in the image. A typical method uses a fully
connection layer after a series of convolutions. [18] proposed
fully convolutional networks for semantic segmentation to
improve the performance of solution to this task.

Semantic segmentation and instance segmentation have
drawn attention for some time now, however, panoptic
segmentation remains yet to be studied. Panoptic segmen-
tation is a joint task of thing and stuff segmentation [23].
Many good solutions were published in the 2018 COCO and
Mapillary Recognition Challenge [22, 27]. A heap of solutions
handle this problem using separate networks for instance
and semantic segmentation, and some other solutions design
end-to-end framework to share computation. After that,
researchers still make efforts to panoptic segmentation [3].
Instance segmentation and panoptic segmentation both
depend on object detection.

3 DATASET

We construct the first dataset for IOID based on the training
set of MSCOCO 2017 [29], which contains 123,287 images
with manually labelled captions and panoptic segmentation.
According to its definition, IOI is the instance of interest in
the description of a given image. Hence, we may annotate
the IOIs in a given image by labelling the instances appear
in its captions and selecting the corresponding regions from
its panoptic segmentation.

In each image, we extract the nouns in the captions of
each image by NLTK library, and automatically check the
possibility for each noun of having one or more corresponding
instance candidates in the panoptic segmentation of the image.
For each noun, if there is one or more instances with the
categories it belongs to, e.g., “man” belongs to “person”, the
noun is considered to have one or more instance candidates.

Figure 2: An example of IOI annotation. The
annotator selects an instance region from the
panoptic segmentation (bottom-right) for a noun in
the caption (top) while viewing the original image
(bottom-left) as a reference.

We filter the captions in which the number of nouns without
any instance candidate is more than 20% of that of all the
nouns, and retain the images with at least one remaining
caption.

Figure 2 shows an example of IOI annotation. In the
annotation system interface, a caption is shown on the top,
and the original image and its panoptic segmentation are
shown in the bottom. In the caption, the nouns with one
or more instance candidates are labelled in different colors
while the other words are illustrated in white. Specifically,
if a noun has only one instance candidate, the noun and its
instance candidate in the panoptic segmentation are labelled
in blue, where the annotators are only required to confirm the
matching. If a noun has more than one instance candidates,
the noun and its instance candidates are labelled in red, in
which case the annotators also need to select the matching
instance from all the candidates. In addition, the currently
annotated noun is underlined for emphasis. Such a strategy
may improve annotation accuracy and speed effectively. In
our annotation, it only requires 20 seconds to annotate each
IOI in average. Furthermore, in the cases where the instance
segmentation is not accurate enough or it is hard to pick
out the corresponding instance for a noun, we encourage the
annotators to discard the images. Finally, we annotate 45,000
images with 205,711 IOIs.

We construct our dataset by representing each IOI with its
category and its region in the panoptic segmentation. There
are 133 categories of IOIs in total, the same as those provided
by the panoptic segmentation in MSCOCO 2017, containing
80 thing categories, such as person, ball and cow, and 53
stuff categories, such as wall, tree and mountain. We further
divide the datasets into the training set and the test set,
which contain 36,000 images with 165,094 IOIs and 9,000
images with 40,617 IOIs, respectively.



4 METHOD

4.1 Overview

IOI represents the user interest in image description. It is
influenced by many factors as to whether an instance is
an IOI, see the description of the image it belongs to. For
example, the instances with salient visual characteristics,
such as large size, distinctive color and central position, are
likely to be mentioned, such as the women and the girl in
Figure 1. Meanwhile, the instances which have interactions
with the visually salient instances are also mentioned in image
description, such as the knife and the fork in Figure 1 are
used in the hands of the woman, though there are another
fork and knife with larger sizes beside them. Moreover, the
instances about the surroundings may also be mentioned,
such as the table in Figure 1 shows where the woman and
the girl sit. Hence, an effective IOID method should be able
to integrate different influences rather than emphasizing a
specific characteristic, which is commonly used in existing
tasks, such as visual saliency in salient object detection and
object category in object detection.

To address the problem of IOID, we propose a novel end-to-
end Cross-Influential Network (CIN), to handle the subtasks
in IOID, i.e., instance-level image decomposition, instance
recognition, and instance interest estimation. Figure 3 shows
an overview of the proposed CIN. It consists of three key
modules: instance extraction, interest estimation and IOI
selection. Specifically, both instance extraction module and
interest estimation module use the feature maps extracted
from each layer of a five-layer ResNet101 [20] as their inputs,
and their results are used as inputs for the IOI selection
module.

4.2 Instance Extraction

Because IOID represents the detected IOI at instance-level, it
is necessary to decompose the original images into instances,
including both things and stuff. Meanwhile, IOID also
requires provision of the semantic labels of IOIs.

Instance segmentation methods, such as Mask R-CNN [14],
apply object detection by setting numbers of candidate boxes
at the beginning. While stuff are usually distributed in a
large area discontinuously. It is therefore difficult to cover the
entire stuff while leaving out certain things. For this reason,
we decide to combine instance segmentation and semantic
segmentation to tackle the subtasks of IOID, instance-level
image decomposition and instance recognition, together in
the instance extraction module.

Inspired by [22, 27], we use the FPN [28] as the backbone
to obtain the multi-level feature maps, and feed them into
the two branches of thing and stuff instance extractions
respectively. FPN takes the top four output feature maps from
ResNet as input, and adds a light top-down pathway with
lateral connections. The feature maps from higher pyramid
levels are spatially coarser, but semantically stronger. FPN
upsamples those feature maps, and merges those of the same
spatial size from the bottom-up pathway and the top-down

pathway to obtain more accurate location:

𝑝𝑜𝑘 = 𝜑(𝑓𝑘) + 𝜒(𝑝𝑜𝑘+1), (1)

where 𝑝𝑜𝑘 is the output of the 𝑘th layer of FPN; 𝑓𝑘 is the
output of the 𝑘th layer of ResNet, 𝑘 ∈ {1, 2, 3, 4}; 𝜒(.)
and 𝜑(.) denote the upsampling and convolution operations,
respectively.

In the thing instance extraction branch, we follow the
procedure of Mask R-CNN [14]. The RPN is used to take
each output feature map of the FPN as an input, and it
performs ROI pooling. The results of each level in FPN are
integrated and imported into a proposal layer to extract
candidate ROIs. The ROIs are refined in a detection layer
and imported into the classifier and mask heads with the top
four feature maps of the FPN.

In the stuff instance extraction branch, similar to [22], the
outputs of the top four layers from the FPN are convoluted,
so that channel number is equal to the number of classes. And
then they are upsampled to the same size and summarized
together:

𝑠 =

4∑︁
𝑘=1

𝜒(𝜑(𝑝𝑜𝑘)), (2)

where 𝑠 is the result with 134 channels implying classification
of each pixel; 𝑝𝑜𝑘 is the output of the 𝑘th layer of FPN; 𝜒(.)
and 𝜑(.) denote the upsampling and convolution operations,
respectively. In this way, all of the feature maps are
transformed into the size of the last layer. And then the
outputs from all levels of the original pyramid are merged
into a single output by an integrated convolution and finally it
is upsampled to generate the required semantic segmentation.
To separate stuff from things, we omit the regions of things
in the semantic segmentation, which comes from the stuff
instance extraction branch, and extract the bounding box
and mask of each stuff to ensure consistency with the thing
instance extraction branch.

In the end, all instances extracted from the thing branch
and the stuff branch are integrated together with their
category, bounding box and segmentation mini mask.

We use the pretrained model of Mask R-CNN. Firstly we
retrain the stuff branch, keeping the weights of ResNet101
and FPN unchanged. And then we finetune all the weights,
and final loss combines the losses of thing branch and stuff
branch.

4.3 Interest Estimation

This module estimates pixel-interest directly according to
features extracted from the backbone, with little considera-
tion for object segmentation and category, and contributes
to the IOI selection module. The ground truth used in this
procedure is the binary segmentation of IOIs. Inspired by [30],
we use a Contextual Attention Network (CAN), which shares
the ResNet101 as the backbone with the instance extraction
module.

CAN uses dual attention mechanism, global attention and
local attention, to collect contextual information in different
scales. Specifically, the feature maps of the top two layers in



Figure 3: An overview of the proposed IOID method.

ResNet101 are used to generate global attention, while those
of the next two layers are applied in local attention, which
works on a local region centered at a position.

In the global attention mode, each pixel is swept by
two bidirectional LSTM in horizontal and vertical direction.
Thus the contexts from four directions can be blended in to
propagate the information of each pixel to all other pixels.
The output is then transformed into the original size of the
input feature map and normalized via a softmax function to
generate the attention weight 𝛼𝑔

𝑖,𝑗 :

𝛼𝑔
𝑖,𝑗 =

exp(𝑥𝑖,𝑗)∑︀
𝑖,𝑗 exp(𝑥𝑖,𝑗)

, (3)

where (𝑖, 𝑗) denotes the position of a pixel, 𝑖 ∈ {1, ...,𝑊},
𝑗 ∈ {1, ..., 𝐻}, and 𝑊 and 𝐻 are the width and height of the
input feature map, respectively; 𝑥𝑖,𝑗 denotes the output at
the position (𝑖, 𝑗). Finally, the input feature map is summed
with weight 𝛼𝑔

𝑖,𝑗 to generate the global feature 𝐹 𝑔:

𝜉𝑔𝑖,𝑗 =
∑︁

𝛼𝑔
𝑖,𝑗𝑓𝑖,𝑗 , (4)

where 𝑓𝑖,𝑗 is the flatten conv-value at (𝑖, 𝑗) in the input
feature map.

In the local attention mode, attention is generated by
performing several convolutions. Each pixel is affected by
its neighboring context region with the width of 𝑤 and
height of ℎ. The attention kernel is generated by several
convolution from the original feature maps and normalized
to a tensor whose channel is 𝑤 × ℎ. It is also normalized by

a softmax function 𝛼𝑙
𝑖,𝑗 =

exp(𝑥𝑖,𝑗)∑︀
𝑖,𝑗 exp(𝑥𝑖,𝑗)

, here 𝑖 ∈ {1, ..., 𝑤}
and 𝑗 ∈ {1, ..., ℎ}. The feature maps are unfolded into a
tensor whose last dimension is 𝑤 × ℎ, and summed with the
transposed attention weight to generate the local feature
𝜉𝑙𝑖,𝑗 =

∑︀
𝛼𝑙
𝑖,𝑗𝑓𝑖,𝑗 .

In this way, we generate four features, two global and two
local, respectively. In the training procedure, the loss function
of interest estimation is defined as the sum of the loss on
these four features:

ℒ =
∑︁

𝜓(𝜉* − ̃︀𝜉*), (5)

where ℒ represents loss of interest estimation; 𝜓(.) represents
binary cross entropy; 𝜉* denotes a global feature 𝜉𝑔 or a local

feature 𝜉𝑙, and ̃︀𝜉* denotes the corresponding groundtruth 𝜉*.
The last layer feature is treated as the interest map of the
whole image.

4.4 IOI Selection

Though interest estimation module contains semantic in-
formation by using high level feature maps, it is still not
accurate nor explicit. The IOI selection module acts as an
instance selector, which aims to use interest estimation results
to pick out the IOIs from the instances proposed from the
instance extraction module. To solve the problem of IOI
selection, we propose a Cross-influential Encoder-decoder
Network (CIEDN).

The interest of one instance is concerned with others
interacting with it. CIEDN predicts whether the pair of
instances is interesting, instead of the interest of one instance.
It is assumed that if the pairs which contain/with a certain
instance are interesting in general, the instance is considered
to be interesting as well. Hence,if an instance is classified
to be uninteresting by pixel-interest estimation, it may be
finally judged as IOI with the “help” of other instances.
On the contrary, if the pixel-interest estimation module
mistakes an instance for an IOI, CIEDN may decide that it
is not interesting, even in the pairs which consider it to be
interesting.



CIEDN is composed by an encoder and a decoder. As
Figure 3 shows, the rectangular area of semantic label and
that of interest estimation result surrounding an instance
are respectively input into a corresponding sub-encoder, and
the output vectors are stitched together. Then, each pair
of two instances is evaluated by a decoder. If the average
probability of the pairs including a certain instance exceeds
0.5, the instance is determined as an IOI.

5 EXPERIMENTS

5.1 Evaluation Metrics and Experiment
Settings

Evaluation metrics. We validate the effectiveness of our
method by comparing it with the state-of-the-art baselines
on the dataset provided in Section 3. Since IOID can be
formulated as a binary classification problem to determine
whether an instance is an IOI, we use precision, recall
and 𝐹 -score as the evaluation metrics. Considering a good
IOID method needs to provide instance-level detection
results rather than pixel-level ones, we refine the definition
of precision, recall and 𝐹 -score on instance level in our
evaluation. Here, 𝐹 -score is calculated as follows:

𝐹 =
(𝛽2 + 1)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

, (6)

where 𝛽2 is the parameter to control weights of precision and
recall. Similar to salient object detection [1], we emphasize
precision by setting 𝛽2 to 0.3.

To a detected IOI 𝐼𝑖, if an IOI in the corresponding

groundtruth ̃︀𝐼𝑗 satisfies these two conditions, we consider 𝐼𝑖
matches ̃︀𝐼𝑗 and treat 𝐼𝑖 as a true-positive detection result:

1) the category of 𝐼𝑖 should be same to that of ̃︀𝐼𝑗 ; 2) the

Intersection of Union (IoU) between 𝐼𝑖 and ̃︀𝐼𝑗 should be
larger than 0.5. If more than one detected IOIs matches the
same IOI in groundtruth, we select the detected IOI with
the largest IoU to the IOI in groundtruth, i.e., each IOI in
groundtruth can match one detected IOI at most.

In our experiments, we found that the inaccuracy of
instance extraction limits the performance of IOID seriously.
Figure 4 shows the number distribution of the missed IOIs
in instance extraction, i.e., the IOIs in groundtruth without
any extracted instances have the same categories to them
and sufficient IoUs (larger than 0.5) with them. We can see
that the missed IOIs are pervasive. The number of images
without any missed IOI is less than 6%; the largest number
of the missed IOIs in an image reaches 43, and the average
number of the missed IOIs is 1.78. Thus, to validate the
performance of determining whether an instance is interesting,
we use additional metrics by removing the missed IOIs in our
evaluation. The removal of the missed IOIs affects the metrics
of recall and 𝐹 -score but not precision, so we represent the
two new metrics as recall* and 𝐹 *.

Experiment settings. In training procedure, if an
instance is an IOI, its probability is set to 1; otherwise,
it is set to 0. Moreover, the probability of a pair is set to
the mean value of the probabilities of the two instances it

Figure 4: Number distribution of the missed IOIs in
instance extraction on the test set.

Table 1: Threshold analysis of IOI probability on the
training set.

threshold 0.30 0.35 0.40 0.45 0.50 0.55

precision 41.76 53.99 66.02 75.66 82.17 86.55
recall 49.98 41.67 33.25 24.65 16.78 10.07
𝐹 43.41 50.54 53.78 51.21 43.26 31.45

includes. Hence, if an instance is an IOI, the probability of
each pair it belongs to achieves 0.5. In test procedure, we
predict the probability of an instance with the mean value of
the probabilities of all the pairs it belongs to. We slightly relax
the threshold to 0.4, which can obtain the best performance
as shown in Table 1.

5.2 Component Analysis

Instance extraction. To verify the importance of both
thing and stuff in instance extraction, we use either the
extracted things or stuff instead of both of them. We
generate two baselines based on the state-of-the-art instance
segmentation method, Mask R-CNN [14], and semantic
segmentation method, Deeplab [4]. Specifically, for the
baseline which only includes things (Thing), we use the
instance segmentation results of Mask R-CNN directly; and
for the baseline which only includes stuff (Stuff), we remove
the instances belonging to things from the segmentation
results of Deeplab.

Table 2 shows the performance of our method and these
two baselines. We can see that:

1) Both Thing and Stuff obtain relatively low scores on
recall and recall* as compared to our method. Specifically, the
scores of Thing on recall and recall* drop 20.49% and 23.80%,
respectively; and that of Stuff drop 27.56% and 34.76%,
respectively. It shows both things and stuff are indispensable
in IOID.

2) The scores of Thing on both recall and recall* are higher
than that of Stuff. For example, the score of Thing on recall
is more than two times higher than that of Stuff. It is because
that things usually represent the primary content of images
and they are more possible to be IOIs than stuff.



Table 2: Evaluation of our method with different
instance extraction modules.

Method precision recall 𝐹 recall* 𝐹 *

Thing [14] 87.06 9.66 30.56 26.00 56.47
Stuff [4] 19.91 2.59 7.82 15.04 18.52
Our 68.47 30.15 52.95 49.80 63.02

3) Thing obtains much higher score on precision than Stuff
and our method. A possible reason is that the removal of
stuff increases the accuracy of IOI selection. Because stuff is
more ambiguous to be IOIs or not than things, its ambiguity
increases when determining the probability of an instance
to be an IOI based on the pairs including it and stuff as
compared to those only referring to things. However, as
mentioned in the first point, the cost of only retaining things
is poor scores on recall and 𝐹 . In contrast, our method that
retains both things and stuff achieves a balance between high
precision and high recall, and obtains the best performance
on 𝐹 .

4) The scores of all the three methods on recall* are
obviously higher than that on recall, from 12.45% to 19.65%.
It also leads to more than 10% increase in the scores on 𝐹 * as
compared to those on 𝐹 . It shows that instance extraction is
still one of the limitations to obtain satisfactory IOID results.

Interest estimation. Since there is no existing instance
interest estimation method, we generate six baselines based
on five state-of-the-art salient object detection methods,
namely DSS [32], MSRNet [11], NLDF [31], PiCANet [30] and
SalGAN [19], and an attention model, SAT [37], to illustrate
the effectiveness of our interest estimation module. In the
generation of these baselines, we directly replace the interest
estimation module of our method with these salient object
detection methods and the attention model, and treat their
outputs as the interest maps.

Table 3 shows the performance of our method and these
baselines, in which we represent the baselines with the names
of the salient object detection methods and attention model.
We have:

1) The baselines using salient object detection methods
usually perform well on precision, but they are weak on recall.
For example, DSS obtains the highest precision score, which
is slightly higher than that of our method, but it performs
the worst on recall and recall*. It is because that salient
object detection methods focus on salient objects, which are
usually IOIs, but ignore the IOIs without salient appearances.
Thus, these baselines achieve worse performance than our
method on 𝐹 and 𝐹 *. Among all these baselines, the baseline
using MSRNet has similar performance to our method. It
also obtains a balance between precision and recall, and it is
slightly worse than ours on all metrics.

2) The baseline using attention model SAT obtains higher
recall than our method, but it performs the worst on precision
as compared to all other baselines. Similarly, it obtains lower
scores than our method on 𝐹 and 𝐹 *.

Table 3: Evaluation of our method with different
interest estimation modules.

Method precision recall 𝐹 recall* 𝐹 *

DSS [32] 68.78 15.24 37.99 25.18 49.14
MSRNet [11] 63.87 29.92 50.62 49.42 59.83
NLDF [31] 67.33 23.18 46.77 38.28 57.30

PiCANet [30] 67.63 24.36 47.97 40.24 58.45
SalGAN [19] 60.31 23.66 44.43 39.09 53.59
SAT [37] 52.09 30.73 44.89 50.76 51.78

Our 68.47 30.15 52.95 49.80 63.02

Table 4: Evaluation of our method with different IOI
selection modules.

Method precision recall 𝐹 recall* 𝐹 *

Binary 40.93 35.71 39.59 58.98 44.04
RNN 46.57 49.10 47.13 81.12 51.64
Our 68.47 30.15 52.95 49.80 63.02

3) By comparing Table 2 and 3, the baselines of replacing
interest estimation module perform better than those of
replacing instance extraction module. It means that the
existing salient object detection methods and attention
models can partly solve the problem of interest estimation,
such as extracting the instances with salient appearances
by salient object detection methods and the ones attracting
attention by attention models.

IOI selection. To validate the effectiveness of the
proposed IOI selection module, we generate two baselines.
One baseline (Binary) binarizes the interest maps by setting
the pixels with high interest, top 25% in our experiments, to
1, and setting the rest pixels to 0. If more than half of the
pixels within an extracted instance are set to 1, the instance is
selected as an IOI. The other baseline (RNN) uses an RNN to
predict the probabilities of all the extracted instance, which
uses a vector consisting of the categories and the maximum
interest values of all the extracted instances as the input.
Here, we use RNN rather than a classifier to explore the
cross-influence between instances.

Table 4 shows the performance of our method and the two
baselines. We can see that:

1) Binary is too simple to provide satisfactory IOI selection
results. Though it obtains higher scores than our method
on recall and recall*, its scores on precision and 𝐹 are low.
If we adjust the threshold in interest map binarization for
higher precision score, it will inevitably cause the diminution
of recall score.

2) RNN provides better results than Binary, i.e., RNN
improves the performance on all the metrics as compared
to Binary. Specifically, RNN obtains much higher scores on
recall and recall* than our method. However, if the recall
score goes too high, it may detect many false-positive IOIs
which limits its performance on precision and 𝐹 .



Figure 5: Qualitative examples of IOID using different methods.

5.3 Comparison with State-of-the-Arts

To further validate the overview performance of our method,
we also compare it with several state-of-the-art methods of
the related tasks, because there is no existing IOID method.
The first baseline is Mask R-CNN [14], which is a typical and
widely used method for instance segmentation. Here, we treat
all the segmented instances as IOIs. The second baseline is
based on the frequency of each category to be an IOI. We use
Mask R-CNN to generate the instance segmentation results
and only retain the instances with high frequency, top 50%
in our experiments. The third baseline is S4Net [9], which is
an advanced salient object segmentation method. Similarly,
we treat all the segmented salient instances as IOIs.

Table 5 shows the comparison results. Here, Mask R-
CNN and S4Net obtains 100% on recall* because all their
segmented instances are retained. We have:

1) Both our method and Frequency use Mask R-CNN as the
basis to extract instance, and obtain better performance than
Mask R-CNN. It shows the effectiveness of the IOI selection
strategies used in our method and Frequency. Furthermore,
as compared to Frequency, our method obtains higher scores
on precision and 𝐹 , which means our method filters the
false-positive IOIs more effectively.

2) Though the task of salient object segmentation has the
same format of input and output as IOID, S4Net obtains
worse performance on both precision and recall as compared
to our method. It illustrates that IOID is a novel task, which
cannot be effectively handled with the existing methods for
other related tasks.

3) Mask R-CNN retains all the segmented instances, but
its recall score is only 37.14%, which means over 60% IOIs
in groundtruth cannot be extracted. Though our method
improves the effect of instance extraction by combining
instance segmentation and semantic segmentation, there
are still many missed IOIs as shown in Figure 4. Hence,
current instance extraction strategies limit the performance

Table 5: Comparison of our method and the state-of-
the-art methods.

Method precision recall 𝐹 recall* 𝐹 *

Mask R-CNN [14] 41.48 37.14 40.39 100.00 47.95
Frequency 50.36 32.76 44.81 88.19 55.90
S4Net [9] 40.70 18.63 31.96 100.00 47.16

Our 68.47 30.15 52.95 49.80 63.02

of IOID seriously, and more effort is required to provide
better instance extraction effect for IOID.

Figure 5 shows some qualitative examples of the IOID
results generated by our method and the compared ones.
It shows that our method outperforms the state-of-the-art
methods.

6 CONCLUSIONS

We proposed a novel task named IOID, which aims to detect
all instances of interest in a given image. To handle the
challenge in IOID, we proposed a IOID method consisting
of instance extraction, interest estimation and IOI selection.
Moreover, we constructed the first IOID dataset containing
45,000 images with manually labeled IOIs. The experimental
results on the dataset demonstrate that the existing methods
for the related tasks cannot effectively handle IOID task and
our method outperforms the state-of-the-art baselines.
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