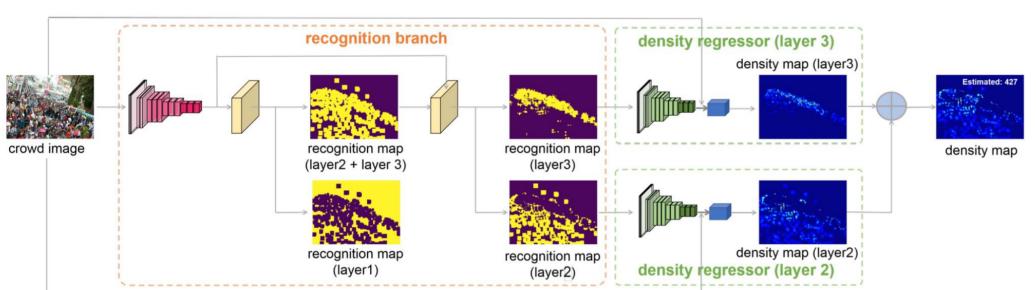
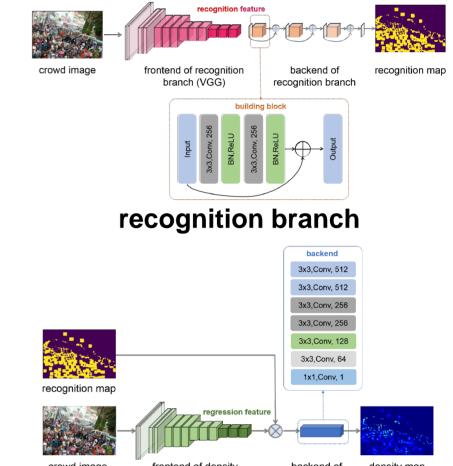

Crowd Counting via Multi-layer Regression

Xin Tan, Chun Tao, Tongwei Ren, Jinhui Tang, Gangshan Wu

Introduction

Crowd counting estimates the number of persons in a crowd image **Challenge:** as congestion degree varies, people's appearances may seem different


Contribution: we propose the first method which estimates crowd densities on crowd regions with different regressors to provide more accurate crowd counting results


Method

We propose a Multi-layer Regression Network (MRNet) based crowd counting method

- Recognition branch: disintegrate a crowd image into background and several crowd regions with different congestion degrees
- **Density regressor:** generate a density map for the crowd regions with the specific congestion degree

MKNet framework

density regressor

Experiments

Datasets

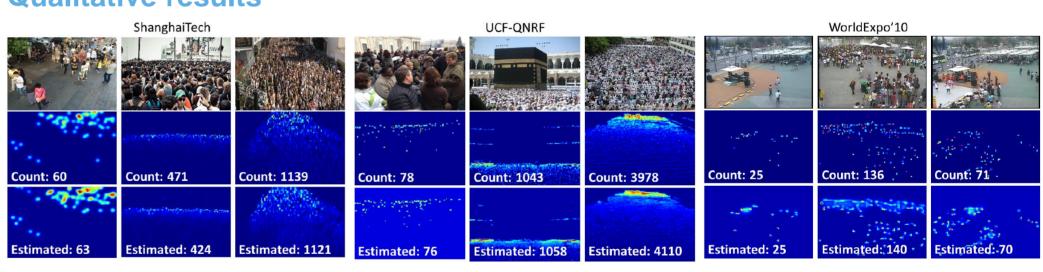
ShanghaiTech, UCF_CC_50, UCF-QNRF, WorldExpo'10

Evaluation criteria

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |C_i - C_i^g|$$

$$MSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (C_i - C_i^g)^2},$$

Component analysis


Configuration	MAE	MSE
MRNet (2-layer)	65.8	106.5
MRNet (3-layer)	63.3	97.8
MRNet (4-layer)	66.4	108.0
MRNet (3-class)	67.1	108.8

multi-layer disintegration strategy

	_	
Window Size	MAE	MSE
32	261.4	375.0
64	252.7	342.1
80	232.3	314.8
128	247 3	344 3

window size

Qualitative results

Comparison with the state-of-the-arts

Method	SHT F	HT Part_A SHT Par		art_B	UCF_CC_50		UCF-QNRF		WorldExpo'10	
	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE
MCNN [34]	110.2	173.2	26.4	41.3	377.6	509.1	277.0	426.0	11.6	-
Cascaded-MTL [26]	101.3	152.4	20.0	31.1	322.8	397.9	252.0	514.0	-	-
Switching-CNN [23]	90.4	135.0	21.6	33.4	318.1	439.2	228.0	445.0	9.4	-
CP-CNN [27]	73.6	106.4	20.1	30.1	295.8	320.9	-	-	8.9	-
CSRNet [15]	68.2	115.0	10.6	16.0	266.1	397.5	-	-	8.6	-
CL [13]	-	-	-	-	-	-	132.0	191.0	-	-
SANet [3]	67.0	104.5	8.4	13.6	258.4	334.9	-	-	8.2	-
ADCrowdNet (AaD) [17]	70.9	115.2	7.7	12.9	273.6	362.0	-	-	7.3	-
ADCrowdNet (AbD) [17]	63.2	98.9	8.2	15.7	266.4	358.0	-	-	7.7	-
SFCN (ImgNet) [32]	-	-	8.9	14.3	-	-	114.8	192.0	-	-
SFCN (GCC) [32]	64.8	107.5	7.6	13.0	214.2	318.2	102.0	171.4	9.4	-
Ours	63.3	97.8	7.5	11.5	232.3	314.8	111.1	182.8	7.1	9.77

red denotes the first place and blue denotes the second place