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ABSTRACT

Crowd counting aims to estimate the number of persons in a
crowd image—-a challenge until this day—as congestion degree
varies, people’s appearances may seem different. To address this
problem, we propose a novel crowd counting method named
Multi-layer Regression Network (MRNet), which consists of a
multi-layer recognition branch and several density regressors. In
practice, the recognition branch recognizes the congestion degree
of the regions in a crowd image, then disintegrates the image
into background and several crowd regions layer by layer, each
regions are assigned different congestion degrees. In each layer, the
recognized crowd regions with the specific congestion degree are
delivered to a regressor with the corresponding density prior for
crowd density estimation. The generated density maps at all layers
are integrated to obtain the final density map for crowd density
estimation. To date, MRNet is the first method to estimate crowd
densities on crowd regions with different regressors. We conduct
a comprehensive evaluation of MRNet on four typical datasets
in comparison with nine state-of-the-art methods. By using multi-
layer regression, MRNet achieves significant improvement in crowd
counting accuracy, and outperforms the state-of-the-art methods.
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1 INTRODUCTION

Crowd counting aims to count the number of persons in a crowd
image, which has drawn much attention because of its wide
application in public security, crowd monitoring and behavior
analysis [4]. As shown in Figure 1, as the crowd becomes congested,
people’s appearances may become harder to recognize, therefore
causing difficulty for face or person detection method. [6, 10, 30].
Recently, the typical solution for crowd counting is to estimate
crowd density with Convolutional Neural Networks (CNNs) based
density regression [3, 15, 34], in which CNNs are trained to learn the
mapping between crowd images and density maps, and the number
of persons are acquired via the sum of density maps. Figure 1
illustrates some examples of density map, where the sparse regions
are labelled in blue and congested regions in red.
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Figure 1: Examples of crowd counting with crowd density
estimation. From top to bottom: crowd images, ground
truths, and density maps generated by MRNet.

Recent years have witnessed significant advances in person
counting and crowd density estimation, especially in solving scale
variation issue by extracting different features with multi-scale
architectures [2, 19, 23, 27, 34]. For example, MCNN uses a three-
column network, in which each column is dedicated to a certain
layer of a congested scene, to extract features in different scales
[34]. Meanwhile, deep network architectures are developed for
crowd counting, e.g., CSRNet [15] demonstrates its advantages in
obtaining more concise and effective results than multi-column
architectures.
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Figure 2: An overview of the proposed MRNet.

However, it remains a thorny problem to provide accurate
crowd density estimation, as the crowd appearances vary as
a result of different perspective distortion, occlusion and scale
variation (as shown in Figure 1). Specifically, crowd appearance in
congested scenes is quite different to that in sparse scenes, because
most persons in congested scenes may not be completely visible.
Normally, with the increase of congestion degree, the scale of
person gets smaller, the density per unit area increases and the
person’s appearance becomes incomplete. Such differences in crowd
appearances cannot be effectively handled by extracting features
from different scales. It is required to extract different features in
regions with diverse congestion degrees to represent persons, which
is not a major concern in previous researches on crowd counting.
What ADCrowdNet [17] proposed bears a close resemblance, which
assigns different weights to represent the person in the image; it
also attempts to binarize the weights by applying a threshold and to
divide a crowd image into regions with people and regions without,
and only estimates crowd density in the former.

To address the problem of congestion degree diversity, we pro-
pose a novel crowd counting method named Multi-layer Regression
Network (MRNet), which consists of a multi-layer recognition
branch and several density regressors. The working principles of
MRNet is to improve the accuracy of crowd counting by applying
multiple regressors on regions with different congestion degrees.
To date, MRNet is the first of its kind to generate density maps with
multiple regression functions.

Figure 2 shows the 3-layer architecture of MRNet. For a given
crowd image, we propose a recognition branch to segment it
into the regions with different congestion degrees gradually by
learning features representing congestion degree. At each layer, the
recognized regions are delivered to a density regressor with the
corresponding density prior, and the remaining parts of the crowd
image are delivered to the next layers with other regressors. Because
each regressor focuses on crowd density estimation with the similar
congestion degrees, it is able to provide more accurate estimation
by optimizing specific parameters of its mapping function as
compared to previous methods of a general regressor for the entire
image. Finally, the density maps generated by all the regressors are
integrated to count the number of persons in the crowd image.
By leveraging different features on the regions with different
congestion degrees, our method is more adaptable to a variety

of crowd images. The experimental results show that our method
outperforms the state-of-the-art methods on four typical datasets.
The main contributions of this paper include:

o The proposal of the first crowd counting method to solve the
problem of congestion degree diversity, which is an essential
element of the accuracy of predicting density maps.

e The proposal of a novel multi-layer regression network—
consisting of a multi-layer recognition branch and multiple
density regressors-to generate density maps for regions with
different congestion degrees separately.

e Evaluation of MRNet’s performance on four typical datasets,
and its superiority over state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2, we
survey the existing crowd counting methods based on detection,
regression and CNNs. In Section 3, we present the details of MRNet,
including recognition branch, density regressor, and the procedures
of ground truth generation and training. In Section 4, we evaluate
MRNet on four typical datasets, and compare it with the state-of-
the-art methods. Section 5 comprises of conclusion of the paper.

2 RELATED WORK

Previous algorithms for crowd counting could be divided into three
categories: detection-based methods, regression-based methods and
CNN-based methods.

2.1 Detection-based Methods

Earlier approaches, to a large extent focus on detection [9] and
counting with low-level features extracted from people. A common
way of detection is to use a sliding window applied with a well-
trained classifier to detect the whole human body [6, 30] or body
part [10], and it achieves reasonable accuracy when crowd is sparse.
However, congestion in crowd and obscurity with occlusion and
scene clutter compromise accuracy of counting because human
facial or body features are not complete or hard to extract.

2.2 Regression-based Methods

Due to the limitation of applying detection-based method in
congested scenes, regression-based methods [7, 11] are developed
to avoid complicated object detection problems. Regression-based
methods try to directly learn the mapping between extracted



features of the images and actual object counts, showing little
consideration for object location information. But this comes at the
cost of increased annotation effort to label a huge amount of dotted
annotations or positions in the training images. Lempitsky et al.
[14] propose a method to learn a linear mapping between features
of the local regions and density at each pixel, which can perform
counting at arbitrary locations. The integral of all the pixels in
the image denotes the count of objects. Considering the difficulty
in obtaining an ideal linear mapping, Pham et al. [20] propose a
random forest to learn a non-linear mapping between features and
image.

2.3 CNN-based Methods

Researchers also focus on CNN-based methods to estimate crowd
density map because of its advantage record in visual recognition
and classification. Walach et al. [31] apply layered boosting and
selective sampling to their work. Shang et al. [24] use end-to-
end CNN to estimate the local and global counts concurrently,
which directly generates the final people counts by inputting the
entire original image. Boominathan et al. [2] use deep and shallow
networks to capture both the high-level semantic information
and the low-level features for generating density map. Zhang et
al. [34] design MCNN, CNN with multi-column architecture, to
tackle the large scale variation in crowd scenes by extracting
features at different scales. Similar to MCNN, Onoro and Sastre [19]
present a scale-aware network with multiple columns, called
Hydra, to extract features at different scales. Sindagi et al. [26]
incorporate a high-level prior into the density estimation network
to boost the prediction performance. Li et al [15] use deep
convolutional networks with dilated convolution layers [6] to
enlarge the receptive field and extract deeper information. To
capture inevitable density variation, DecideNet [16] estimates the
crowd density by generating object detection [22] and regression
based density maps separately. Cao et al. [3] use scale aggregation
modules, which follow the idea of [28, 29], to extract multi-scale
features and transposed convolutions to generate high resolution
density map. Liu et al. [17] propose an attention-aware network,
leveraging semantic segmentation [1, 18, 21, 33] to provide crowd
location information to density map estimator, which not only
obtains congestion degree value but also blocks out the background
noise.

3 MULTI-LAYER REGRESSION NETWORK

Figure 2 demonstrates the network structure of our proposed
method. The MRNet comprises two components: recognition
branch and density regressors. The recognition branch is based
on fully convolutional network and used to detect crowd regions
with different congestion degrees layer by layer, while multiple
density regressors employ deep CNN to generate density maps
for each crowd region. In order to avoid the confusion caused by
predicting different kinds of congested crowd at the same time,
classification strategy between binary and multi-class classification
must be taken into account as the crowd may be omitted or
wrongly classified into the category with similar congestion degree.
After a series of attempts, it comes out with the conclusion that
the multi-layer binary classification strategy outperforms the

multi-class classification. In the regression stage, density maps
independently generated from multiple density regressors are used
in final result fusion. Every density regressor consists of a VGG-
16 [25] backbone network pretrained on ImageNet [8] to extract the
image features, and a backend network which encompasses pure
convolutional layer to map the feature into the density map. After
feature extraction, feature maps generated by backbone multiply
the corresponding classification result pixel-wisely to filter out
the noises and irrelevant crowd regions. The filtered maps which
consist of crowd regions are delivered to the backend network for
next regression step. Finally, all predicted density maps are summed
to obtain the final result.

3.1 Recognition Branch

The purpose of the recognition branch is to discover the location
and congestion degree of the gathering. The boundaries between
crowd density levels are not distinct, making it hard for the
model to segment the crowd in regions with varying congestion
degrees as the crowd may be classified to the wrong category
because its congestion degree is on the verge of the boundary. To
tackle difficulties and eliminate uncertainties, recognition branch
applies multi-layer disintegration strategy to segment the crowd
in lieu of multi-class classification. Each layer of the recognition
branch recognizes crowd regions with specific congestion degree
and delivers the unidentified region to the next layer for further
recognition. For instance, the first layer of recognition branch
performs binary classification on the original image in which one of
the classes stands for background and the other represents the area
where the crowd density is greater than 0. The next recognition
layer of the branch performs binary classification on the detected
crowd regions which are to be further identified. New classification
result includes the regions that should be delivered to the next
layer and those belong to this layer. Once the congestion degree
of the region is determined, it is separated from the image and the
remaining are sent to the next recognition layer until all the crowd
regions are recognized and assigned a congestion degree. Finally,
recognition results are delivered to density regressors to generate
density maps. Through repetition, multi-class classification can be
disintegrated into multiple binary classifications in a way to avoid
accuracy degradation caused by imbalanced training samples.
Our Recognition branch has two parts: frontend and backend.
The frontend uses first 10 convolutional layers of VGG-16 [25]
to extract crowd features, while the recognition backend, which
consists of several residual blocks, recognizes and segments the
crowd. The architecture of recognition branch and the detailed
parameters of the backend of the recognition branch are shown in
Figure 3. The output channels of each residual block are 256, 128
and 64, followed by a 1x1 convolutional layer as output layer.

3.2 Density Regressor

Inspired by the idea of data driven, we apply several independent
density regressors to different crowd regions instead of using single
regressor for the entire image. The number of density regressors
corresponds with that of layers of recognition branch. Independent
density regressor shows its advantage in avoiding the influence
caused by crowd densities variation and different characteristics
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Figure 3: The architecture of the recognition branch.
""""" backend
3x3,Conv, 512
3x3,Cony, 512
3x3,Conv, 256

3x3,Conv, 256

3x3,Conv, 128

3x3,Conv, 64

1x1,Conv, 1

backend of
density regressor

crowd image

frontend of density
regressor (VGG)

density map
Figure 4: The architecture of a density regressor.

of noises. To a certain extent, density regressor shares a similar
structure with the layer of recognition branch, both encompassing
the frontend-backend pattern and a fine-tuned VGG-16 [25] as the
frontend to extract low-level features. The architecture of regressor
are shown in Figures 4. The recognition result is used to filter
the output of the backbone which contains the image features by
pixel-wise product operation, letting regressors learn the features
of specific crowd regions.

In Figure 5, density regressors trained at different recognition
layers generate varying regression response maps, each matching
the crowd regions with different congestion degree in the given
image. The regressor in the congested regions is forced to reach a
relatively higher response than that in sparse regions. The accuracy
of estimation on each part of the image is improved by decoupling
density regression via multiple regressors.

3.3 Ground truth Generation
3.3.1 Density map. Following the method described in [34], we

use the geometry-adaptive kernels to generate density map for
congested scenes. The geometry-adaptive kernel is defined as:

N
F(x) = Z 8(x — x1)Go, (x), with o; = pd;. (1)

i=1
For each annotated person x;, the average distance of k nearest
neighbors is shown as d;. Then the delta function §(x — x;) is
convolved with a Gaussian kernel with o; standard deviation to

Figure 5: Examples of density maps generated by different
density regressors. From top to bottom: crowd images, and
density maps generated by the regressors on layer 2 and
layer 3 in MRNet, respectively.

Table 1: Setups to generate density maps for different
datasets.

l Dataset [ Generation

ShanghaiTech Part_A [34]
UCF_CC 50 [12]
ShanghaiTech Part_B [34]
UCF-QNRF [13]
WorldExpo’10 [5]

Geometry-adaptive kernels

Fixed kernel: o = 15

Fixed kernel: o = 3

generate density maps. We follow the procedure in [15] to generate
the ground truth of density map, as shown in Table 1.

3.3.2  Recognition map. It is time-consuming to use k nearest
neighbors because the value of every pixel for recognition maps
needs to be computed. Here we use sliding window scheme to
generate recognition map, which is very easy to implement with a
convolutional filter. First, the value of each pixel is set to the number
of annotations of people’s heads appears in the window. Then we
set a threshold to convert the head counts to degrees of congestion.
If the values exceed the threshold, they are set to a fixed degree
of congestion, and vice versa. In a 2-layer recognition branch, we
set 3 as the threshold, which only classifies sparse and congested
crowds. Different configurations used to generate recognition map
for different datasets are shown in Table 2.

3.4 Training

We train our method in an end-to-end way. The VGG-16 frontend
is fine-tuned from a pre-trained VGG weight. Stochastic gradient
descent is used as optimization method to train our model with a
learning rate of 1e-6 for the density regressor and a learning rate of
5e-3 for the recognition branch. For recognition branch, we apply



Table 2: Setups to generate recognition maps for different
datasets.

l Dataset [ Window size [ Threshold ‘
ShanghaiTech Part_A 438 3
ShanghaiTech Part_B 43 3

UCF_CC_50 80 3
UCF-QNRF 48 3
WorldExpo’10 24 3

cross-entropy loss as the loss function to evaluate the performance
of crowd recognition. For density regression, we use Euclidean
distance to measure the difference between the output density map
and the ground truth. The loss function is defined as follows:

N
1
Lp(©) = o > IIF(Xi:0) ~ FYII5, @
i=1

where N is the batch size; F(X;; ©) is the predicted density map
generated by density regressor with parameters denoted as ©; X;
represents the input image; Fig is the ground truth of the input
image.

By adding the above loss functions, our final objective function
is defined as follows:

N
L=Lp+) Lo, 3)

i=1

where N is the layer number, and L¢ denotes the cross-entropy
loss mentioned above.

4 EXPERIMENTS
4.1 Datasets and Experiment Settings

We evaluate our method on four mainstream datasets: Shang-

haiTech [34], UCF_CC_50 [12], UCF-QNRF [13], and WorldExpo’10 [5].

ShanghaiTech dataset. ShanghaiTech dataset is a large-scale
crowd counting dataset, which contains 1,198 images with 330,165
annotated persons. The dataset is divided into two subsets: SHT
Part_A and SHT Part_B. Specifically, the images in SHT Part_A
are collected from websites, among which 300 images are used for
training and 182 images for testing. The images in SHT Part_B have
relatively sparse crowd scene and are collected from streets. 400 of
them are used for training and the remaining for testing.

UCF_CC_50 dataset. UCF_CC_50 dataset includes 50 images
from highly congested scenes. The annotated number of persons
per image ranges from 94 to 4,543. Due to limitations in the number
of images and the large span of people count, it is difficult, if not
impossible, to run an accurate count. In our experiments, we adopt
the standard settings [12] to run a 5-fold cross validation.

UCF-QNRF dataset. UCF-QNRF dataset is the largest real world
dataset, which contains 1,535 images collected from the internet
with 1,251,642 annotated persons. The annotated number of persons
per image ranges from 49 to 12,865 with an average of 815 persons.
The images are divided into the training dataset with 1,201 images
and the testing dataset with 334 images. The average resolution of
the images in UCF-QNRF dataset is 2013x2902. To reduce training

time and pressure on memory capacity, we reduce the length of
the longer side of the images to 1024 and scale down the other
proportionally.

WorldExpo’10 dataset. WorldExpo’10 dataset contains 3,980
frames from 1,132 video sequences captured by 108 surveillance
cameras, among which 3,380 frames are used for training and
the remaining from 5 different scenes-120 frames per scene-are
used for testing. It also provides the regions of interest and the
perspective map for each frame, and we use the regions of interest
in our experiments.

All the experiments are conducted on the same computer with
i7 3.5GHz CPU, 32GB memory and 1080Ti GPU.

4.2 Evaluation Metrics

Mean absolute error (MAE) and mean square error (MSE) are two
widely used metrics in crowd counting evaluation. Their definitions
are shown as follows:

N
1 g
Mﬁ—ﬁ;WﬁQL @)

where N is the number of test images; C; denotes the estimated
number of persons in the ith image, and Cl.g denotes the ground
truth of the ith image, i.e., the annotated number of persons in the
ith image.

Table 3: Evaluation of MRNet with different multi-layer
disintegration strategies on SHT Part_A dataset.

| Configuration | MAE | MSE |
MRNet (2-layer) | 65.8 | 106.5
MRNet (3-layer) | 63.3 | 97.8
MRNet (4-layer) | 66.4 | 108.0
MRNet (3-class) | 67.1 | 108.8

4.3 Component Analysis

Recognition branch is a key module in MRNet, which disintegrates
a crowd image into regions with different congestion degrees and
feeds them into corresponding density regressors. There are two
important components in the construction of recognition branch.
One of them is the strategy to disintegrate a crowd image into
multiple regions, i.e., the number of used layers and how to classify
those regions. The other is the generation of recognition map,
especially the window size used in label generation.

4.3.1 Multi-layer disintegration strategy. We study the influence of
the number of layers in crowd image disintegration on the accuracy
of crowd counting on SHT Part_A dataset. We also compare the
effectiveness of multi-layer binary classification and one-layer
multi-class classification in crowd image disintegration.

The top three rows in Table 3 show the accuracy of crowd count-
ing via multi-layer binary classification with different numbers
of layers. Specifically, the 2-layer MRNet disintegrates the crowd



Table 4: Evaluation of MRNet trained with the recognition
maps generated with different window sizes on UCF_CC_50
dataset.

| Window Size | MAE | MSE |

32 261.4 | 375.0
64 252.7 | 3421
80 232.3 | 314.8
128 2473 | 3443

image into regions of crowd and background without persons,
and the regions of crowd are estimated with the same regressor;
the 3-layer MRNet further disintegrates the regions of crowd into
two categories, sparse and congested, and feeds the regions to its
corresponding density regressor; the 4-layer MRNet disintegrates
the regions of crowd into three categories—low-congested, mid-
congested and high-congested—as compared to the two categories
in the 2-layer MRNet. We train the methods with different layers
following the procedure described in Section 3.4. To disintegrate
the regions of crowd into sparse regions and congested regions
in 3-layer MRNet, window size is set at 72 and threshold at 3.
Sparse regions in 3-layer MRNet is compatible to low-congested
regions in 4-layer MRNet. Congested regions, on the other hand,
is further distinguished between mid-congested regions and high-
congested regions at the same window size of 72 and threshold of
6. As shown in Table 3, 2 conclusions may be drawn therefrom: 1)
The fact that 3-layer MRNet obtains better performance than the
2-layer MRNet illustrates the effectiveness of multi-layer regression
rather than simply disintegrating crowd images into crowd and
background as in ADCrowdNet [17]; 2) The result that 3-layer
MRNet obtains better performance than 4-layer MRNet may point
to the following suggestion: the increase of the number of layers
may not be positively correlated to the accuracy of crowd counting.
A possible explanation is that as a result of unclear boundary in
between, the imprecise division in the category of congestion degree
may occur.

We also validate the performance of directly disintegrating
crowd images into three categories, which is denoted as MRNet
(3-class) in Table 3. We can see that the performance of the 3-class
MRNet is 6.0% higher than in MAE and 4.6% higher in MSE, as
compared to that of the 3-layer MRNet. It may be caused by the
imbalance in training samples of different categories of regions, i.e.,
the high-congested regions are much less than those with low
crowd densities (as shown in Figure 6), which is another contributor
to the inaccuracy in mid-congested and high-congested region
disintegration in the 4-layer MRNet.

4.3.2 Window size in ground truth generation. We study the
influence of different window sizes in generating the ground
truths to the accuracy of crowd counting on UCF_CC_50 dataset.
According to Table 2, we use 80 as the default window size and select
three widely used window sizes, 32, 64, and 128, for comparison.
Figure 7 shows the examples of the recognition maps generated with
these different window sizes. In the generation of all the recognition
maps, the threshold is set to 3.

Figure 6: Examples of imbalanced distribution of recogni-
tion maps on SHT Part_A dataset. From top to bottom: crowd
images, and recognition maps in ground truth. Here, the
background, the sparse regions and the congested regions
are labelled in black, yellow and green, respectively.

Figure 7: Examples of the recognition maps generated with
different window sizes. From top to bottom: crowd images
from SHT Part_A dataset, and recognition maps in ground
truth generated with the window sizes of 32, 64, 80 and 128,
respectively.

Table 4 shows the performance of crowd counting when MRNet
is trained with the recognition maps generated with different
window sizes. We can see that MRNet with the default window
size obtains the best performance. The experimental results show
that a fast and feasible way to determine the window size is to use
the average value of one-tenth of the shorter side of all the images
in a dataset. As shown in Figure 7, at a smaller window size ( i.e.,



Table 5: Evaluation of different methods on ShanghaiTech, UCF_CC_50, UCF-QNRF and WorldExpo’10 datasets. The results
of the first place on each metric are marked in red and second place in blue.

Method SHT Part_A | SHT Part B | UCF_CC_50 | UCF-QNRF | WorldExpo'10

MAE [ MSE | MAE [ MSE | MAE | MSE | MAE [ MSE | MAE [ MSE
MCNN [34] 110.2 | 173.2 | 264 | 413 | 377.6 [ 509.1 | 277.0 | 426.0 | 11.6 -
Cascaded-MTL [26] [ 101.3 | 1524 [ 20.0 | 31.1 | 322.8 | 3979 [ 252.0 | 5140 | - -
Switching-CNN [23] | 90.4 | 1350 | 21.6 | 33.4 | 318.1 | 439.2 | 228.0 | 4450 | 94 -
CP-CNN [27] 73.6 | 106.4 | 20.1 | 30.1 [ 2958 | 320.9 | - - 8.9 -
CSRNet [15] 682 | 1150 | 10.6 | 16.0 | 266.1 [ 3975 [ - - 8.6 -
CL [13] - - - - - - [1320 [ 1910 | - -
SANet [3] 67.0 | 1045 | 84 | 13.6 [ 2584 | 3349 | - - 8.2 -
ADCrowdNet (AaD) [17] [ 70.9 | 1152 [ 7.7 [ 12.9 | 2736 [ 3620 | - - 7.3 -
ADCrowdNet (AbD) [17] | 63.2 | 98.9 | 82 [ 157 | 266.4 | 3580 | - - 7.7 -
SFCN (ImgNet) [32] - - 89 | 143 | - - [ 1148 [ 1920 | - -
SFCN (GCC) [32] 648 |107.5 | 7.6 | 13.0 [ 214.2 [ 318.2 | 102.0 | 171.4 [ 9.4 -

Ours 63.3 | 97.8 7.5 11.5 | 232.3 | 314.8 | 111.1 | 1828 | 7.1 9.77

32), fewer congested regions were included, with the increase of
window size ( i.e., 128), little information would be revealed about
sparse regions. Both would compromise the imbalance in training
samples. The map generated with window size of 80 is closer to the
real congested scenes in the original image. Therefore, window size
of 80 is the most plausible option as it is the closest to the congested
scenes in the original image.

4.4 Comparison with State-of-the-Arts

To illustrate the effectiveness of MRNet, we conduct a comprehen-
sive comparison of MRNet and nine state-of-the-art crowd counting
methods, including ADCrowdNet [17], Cascaded-MTL [26], CL [13],
CP-CNN [27], CSRNet [15], MCNN [34], SANet [3], SFCN [32],
and Switching-CNN [23]. It is worth noting that ADCrowdNet
(AaD) and ADCrowdNet (AbD) are different implementation of
ADCrowdNet using linear and binary masks respectively; SFCN
(ImgNet) and SFCN (GCC) are different versions of SFCN pretrained
on ImageNet and GCC datasets respectively.

Table 5 shows the performance of all methods on four datasets,
in which the results of the first place and the second place on
each metric are labelled in red and blue, respectively. Due to the
unavailability of source codes of most state-of-the-art methods, we
use the experiment results provided by works of the authors and
other researchers. But none of the methods have been evaluated
on the MSE metric in WorldExpo’10 dataset. Through comparison
of the performance of MRNet and other methods, we have drawn
the following conclusions:

1) In all 9 metrics, MRNet either takes the first or second
places (except MSE in WorldExpo’10 dataset). This indicates a clear
demonstration of MRNet’s superiority over other state-of-the-art
crowd counting methods.

2) Our proposed method ranks first on 5 metrics and comes sec-
ond on 4 metrics. Despite the vastly different common perceptions
toward first and second places, it is still a satisfying performance
and a much better one than the other methods. It is also worth
noting that our proposed method uses common VGG pre-trained
weight, and it still outperforms SFCN (GCC), which takes first

places on 3 metrics and the second places on 1 metric, and is
pretrained on GCC dataset. The GCC dataset consists of 15,212
high-resolution large-scale synthetic crowd images with detailed
annotation, which is of great help to improve the accuracy of
estimation. Due to the limitation of GPU memory, our proposed
method is unable to be pretrained on the same dataset for a fair
comparison with SFCN (GCC). If pretrained on the same dataset
as MRNet, the estimation accuracy of SFCN degrades significantly
(See the comparison between SFCN (ImgNet) and SFCN (GCC) in
Table 5), and is outperformed by MRNet on all metrics. This is a clear
demonstration of the good generalization ability of our method.

3) When compared with multi-column methods, e.g. MCNN, our
method achieves better performance on all metrics. The reason
could be that the former lacks the ability to handle regions with
different congestion degrees, and thus fails to extract features at
different scales of the image. Normally, multi-scale methods use
single density regressor to generate density map for the entire
image. However, as the crowd becomes congested, the scale of
person changes, the person’s appearance becomes incomplete,
and the features of persons in different crowd regions with
different congestion degree become difficult for single regressor to
learn. MRNet apply multiple density regressors to learn specific
features of persons in different congested regions, which reduce the
difficulty of learning mapping function and improve the accuracy
of estimation in these crowd regions.

4) In comparison with the methods based on deep neural network,
such as CSRNet, our proposed method performs better because
CSRNet may output the negative density for background scenes
and positive density for specific objects other than persons. Our
method can filter out the objects other than persons when feature
map generated by backbone multiplies the recognition map pixel-
wisely. Moreover, with the help of specific regression function,
MRNet achieves better performance in estimating density maps
with different crowd densities. Figure 8 shows the examples of
crowd counting results generated by MRNet on ShanghaiTech,
UCF_CC_50, UCF-QNRF and WorldExpo’10 datasets. We can see
that our proposed method obtain a robust and state-of-the-art
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Figure 8: Qualitative examples of crowd counting using MRNet on ShanghaiTech, UCF-QNRF, WorldExpo’10 and UCF_CC_50
datasets. To each dataset, from top to bottom: crowd images, ground truths, and density maps generated by MRNet.

performance on various scenes, and is proved to be equally effective
in sparse crowds and congested ones.

5 CONCLUSION

In this work, we proposed a novel multi-layer convolutional neural
network called MRNet for identifying crowd scenes with different
densities. We used recognition branch to localize crowds in images
and extracted the congestion information for regression. Density
regressors in each layer obtain specific mapping function for density
estimation. Thanks to multi-layer architecture, MRNet is capable
of learning different features of images with diverse degrees of
congestion, predicting more accurate density maps for both sparse
and congested regions. Hence, MRNet is showing more robustness
and accuracy in various crowded scenes. On four mainstream crowd
counting datasets (ShanghaiTech, UCF_CC_50, WorldExpo’10 and
UCF-QNRF), MRNet delivers competitive performance compared
with state-of-the-art methods.
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