

Nice, France October 21-25 2019

P1A-11

Hierarchical Visual Relationship Detection

Xu Sun^{1,3}, Yuan Zi¹, Tongwei Ren^{1,3}, Jinhui Tang², Gangshan Wu¹

¹ State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
² School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
³ Shenzhen Research Institute of Nanjing University, Shenzhen, China

Motivation and Solution

• Hierarchical visual relationship detection (HVRD) encourages predicting abstract yet compatible relationship triplets when the confidence level of the specific image content is relatively low

relationship triplets	VRD	HVRD
<pre>person, stand by, elephant></pre>	correct	1.00
<person, elephant="" near,=""></person,>	wrong	0.87
<person, animal="" near,=""></person,>	wrong	0.76
<entity, entity="" interact,=""></entity,>	wrong	0.15
<person, elephant="" watch,=""></person,>	wrong	0.00

- Our solution
 - Hierarchical concept embedding: embed concepts in different abstraction levels with order embedding
 - Hierarchical object detection: trade off specificity for accuracy with a vision and knowledge joint model
 - Hierarchical predicate detection: combining visual feature and context information

P1A-11

Datasets: H-VRD and H-VG

- Construct two datasets for HVRD by extending VRD and VG datasets
- Evaluation criterion: recall@N (k=α)

$$\begin{array}{ll} \text{component score} & \varphi^{S}(g,r) = \begin{cases} \frac{d_{rS}}{d_{gS}}, & r^{S} \in T_{gS}, \\ 0, & \text{otherwise}, \end{cases} & \text{triplet score} & \varphi(g,r) = \begin{cases} 0, & \varphi^{S}(g,r) \cdot \varphi^{P}(g,r) \cdot \varphi^{O}(g,r) = 0 \\ \frac{1}{3}(\varphi^{S}(g,r) + \varphi^{P}(g,r) + \varphi^{O}(g,r)), & \text{otherwise}, \end{cases} \\ \end{array}$$

- Comparison
 - Task: HPD and HVRD
 - Result: our method is superior to the state-of-the-art baselines on all the criteria

	Mathad	HPD			HVRD				
H-VRD dataset	Method	HR@50	HR@100	BR@50	BR@100	HR@50	HR@100	BR@50	BR@100
	Lu's	50.32	50.32	50.75	50.75	13.81	14.92	13.84	15.26
	VTS	50.08	50.08	50.59	50.59	11.84	13.95	12.04	15.15
	DR-net	53.62	53.62	54.02	54.02	14.80	16.90	14.84	17.50
	DSR	54.19	54.23	54.71	54.79	14.64	16.82	14.68	17.46
	Ours	60.28	60.28	66.20	66.20	15.94	18.66	17.03	19.94
H-VG dataset	Mathad	HPD			HVRD				
	Method	HR@50	HR@100	BR@50	BR@100	HR@50	HR@100	BR@50	BR@100
	VTS	64.44	64.66	65.24	65.47	6.19	8.17	6.21	8.63
	DSR	64.27	68.56	65.12	69.47	0.31	0.57	0.32	0.57
	Ours	73.89	73.99	76.11	76.25	9.40	11.29	9.77	11.74

Experiments