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ABSTRACT
Acting as a bridge between vision and language, visual relationship
detection (VRD) aims to represent objects and their interactions in
an image with several relationship triplets. Nevertheless, the con-
ventional VRD task shows little consideration for the penalization
of incorrect relationship predictions, which in turn undermines its
support for image understanding applications. In this paper, we
propose a novel VRD task named hierarchical visual relationship
detection (HVRD), which encourages predictions with abstract
yet compatible relationship triplets when the confidence level of
the specific image content is relatively low. Meanwhile, HVRD
can handle the inevitable ambiguity of groundtruth annotation in
VRD. Based on this, we propose a HVRD method, consisting of
hierarchical object detection and hierarchical predicate detection.
It can effectively detect the hierarchical visual relationships by
exploiting both object concept hierarchy and predicate concept
hierarchy with order embedding. We also propose the first datasets
for HVRD evaluation, H-VRD and H-VG, by expanding the rela-
tionship category spaces of VRD and VG datasets to hierarchical
ones respectively. The experimental results show that our method
is superior to the state-of-the-art baselines.
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1 INTRODUCTION
As a bridge between vision and language, visual relationship
detection (VRD) aims to represent objects and their interactions
in images and videos with relationship triplets in the format of
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Figure 1: An example of HVRD as compared to VRD.

<subject, predicate, object> [20]. It serves as a foundation of many
multimedia applications, such as image/video captioning [3, 25, 36]
and visual question answering [1].

The application of VRD, is built on the prerequisite that the
detected visual relationships should be correct. The reason can be
rather straightforward: the incorrect relationship predictions may
conflict with the correct ones and prevent the applications from
deriving useful information from VRD results. However, the recall
criterion used in conventional VRD evaluation cannot penalize the
incorrect relationships effectively, due to the fact that the recall
criterion only evaluates the correct relationships in the VRD results
and shows little consideration for the incorrect ones.

A widely-accepted reason for using recall criterion is that there
is inevitable ambiguity in the groundtruth annotation of VRD
datasets, i.e., the annotators may miss some visual relationships
with low saliency and use inconsistent words to represent the
same subject/object or predicate. This, however, cannot justify
using recall criterion without penalizing the incorrect ones in the
VRD results. In other words, we may find a better solution for
VRD evaluation if we gain some insights into VRD groundtruth
annotation. As a matter of fact, the crucial visual relationships
are always annotated, while correct yet unimportant ones may go
unnoticed. And it follows that these missed relationship instances
should be ranked lower than the annotated ones in terms of
importance while prediction. Therefore, it is reasonable to penalize
the abovementioned visual relationships of lower importance while
evaluation. Moreover, the annotators may use inconsistent words
to describe the same subject/object or predicate in annotation, such
as “elephant” vs.“animal” and “stand next to” vs.“near”. Those words
are all correct descriptions, despite their differences in specificity.
It will also be useful to obtain the abstract yet correct relationship
instances if the specific ones cannot be detected.

Based on the above observation, we propose a novel VRD task,
named hierarchical visual relationship detection (HVRD). To tackle
the ambiguity of groundtruth annotation in VRD, we establish the
connections among relationship triplets by constructing hierarchi-
cal concept structures on both subject/object and predicate cate-
gories. The relationship concept hierarchy consists of object concept
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hierarchy and predicate concept hierarchy, both of which are
single root trees and express semantic generalization/specialization
relation among concepts at different semantic levels. The closer a
concept is to the root, themore abstract the concept is and vice versa.
Once a relationship instance is detected, the compatibility between
the predicted triplet and annotated ones in groundtruth will be
evaluated. For instance, a relationship tripletA is compatible with a
relationship triplet B if each element in A, i.e., subject, predicate or
object, is the same or ancestor node in the concept hierarchy to the
one in B, and the bounding boxes of both their subjects and objects
have high IoU. If the detected relationship triplet is compatible with
an annotated one in groundtruth, its score is calculated according
to their semantic similarity. Figure 1 gives an example of HVRD
as compared to the conventional VRD. The correct relationships,
such as <person, near, animal>, are considered useful in HVRD
even they are not specific enough; and the incorrect relationships,
such as <person, watch, elephant>, are penalized to avoid the
misunderstanding of image content. Furthermore, to avoid resulting
in too many incorrect relationship triplets, we propose a new
adaptive evaluation criteria, Recall@N (k = α ), which only considers
top-α detected relationship triplets between an object pair instead of
arbitrary number of that, within N relationship detection instances
per image. Here, α is an adaptive value which is the number of
annotated relationship triplets of each object pair.

We propose a HVRD method, consisting of hierarchical object
detection module and hierarchical predicate detection module.
It can effectively detect the hierarchical visual relationships by
exploiting both object and predicate concept hierarchies with
order embedding [31]. Moreover, it is worth noting that to date,
there is no available dataset for HVRD, though VRD has several
datasets including Visual Relationship Dataset [20] and Visual
Genome [15]. Therefore, by expanding the category spaces of VRD
and VG datasets to hierarchical ones, we generate the first datasets
for HVRD evaluation, including Hierarchical Visual Relationship
Dataset (H-VRD) and Hierarchical Visual Genome (H-VG).

The main contributions of this paper include:
(1) The proposal of a novel HVRD task that aims to improve the

correctness of the detected relationship triplets.
(2) The generation of two HVRD datasets for evaluation, includ-

ing H-VRD and H-VG.
(3) The proposal of an order embedding based HVRD method

which successfully encodes the knowledge contained in concept
hierarchies.

2 RELATEDWORK
2.1 Visual Relationship Detection
Visual relationship detection has been widely used by various visual
understanding applications, including image retrieval [2, 13], image
captioning [36], scene graph generation [16, 33, 34, 39] and visual
question answering [1]. Within the recent few years, a number of
visual relationship detection methods have emerged [4, 14, 17, 18,
20, 35, 37, 40–42, 44–46].

Lu et al. formally proposed VRD task on static image with the
first VRD dataset [20]. They also developed the first VRD method
combining deep convolutional neural network and language prior.
Yu et al. applied knowledge distillation in VRD for the first time [38].

The method distills external linguistic knowledge extracted from
large scale textual data. Zhou et al. proposed an attention based
model, which successfully fuses language and spatial information
with CNN feature and achieves great performance [44]. Recently,
Yin et al. proposed an effective framework, Zoom-Net, with a
well designed spatial-context-appearance module [37]. They also
exploited the structural knowledge contained in semantic concept
hierarchies to improve the visual feature. Nevertheless, Zoom-Net
still focuses on conventional VRD.

To apply visual relationship detection in real-world scenario,
a large scale dataset, Visual Genome [15] is constructed, which
contains more than 100K images and covers a raft of object and
predicate categories. It poses a great challenge to the existing
methods. Zhang et al. developed a large-scale visual relationship
detection method to tackle the overlarge category space and
extremely imbalanced data, by embedding visual and semantic
features into a shared space [42]. The experiment results shows the
effectiveness of their method.

It is also worth mentioning that Shang et al. formalized video
visual relationship detection task (VidVRD) and constructed a
dataset for evaluation [29]. Moreover, they proposed the first
VidVRD frameworkwith the capability of predicting dynamic visual
relationships in video. It adopts a bottom-up strategy and utilizes
iDT feature [32] for dynamic relationship recognition.

2.2 Hierarchical Object Detection
The exploration of hierarchical visual recognition has existed
for a long time. Deng et al. constructed an essential large scale
hierarchical image dataset, Imagenet [8], the object categories in
which are associated with the semantic hierarchy of WordNet [23].
With the structural knowledge within WordNet, large scale and
open-ended visual recognition can be promoted.

Encouraged by Imagenet, researchers has proposed numerous
hierarchical object detectionmethods [6, 7, 9–11, 24, 26]. DARTS [9]
is a well designed framework for hierarchical object recognition,
which is optimized by trade-off between specificity and accuracy.
Ordonez et al. [24] proposed an entity level object recognition
method, which involves “naturalness” of expression, mined from
enormous amount of textual data on the Internet. Recently, to
tackle object detection over 9,000 categories, Redmon et al. [26]
constructed a new framework, YOLO9000, which is able to jointly
training on classification and detection datasets combined with the
concept hierarchy of WordNet. In this way, the model may solve
the zero-shot classification problem.

3 METHOD
HVRD uses two-dimensional subject/object and predicate concept
hierarchies to tackle the inconsistency and diversity of relationship
triplets. To make the best of structural knowledge contained in
concept hierarchies, we propose an order embedding based HVRD
method with multi-modal feature. Our framework is inspired
by a fact that the generalization/specialization relation among
hierarchical concepts is a typical partial order relation, which
possesses reflexivity, transitivity and antisymmetry. Therefore,
we use two high dimensional order embedding vector spaces to
model the relations among the hierarchical subject/object and
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Figure 2: An overview of the proposed HVRD method. ϵv , ϵ ′v and ϵl demote visual and language embedding functions.

predicate concepts respectively. We obtain two sets of embedding
vectors to represent the two kinds of concepts, which effectively
preserve the hierarchical structural knowledge. Within the concept
embedding spaces, we construct a HVRD framework consisting
of hierarchical object detection module and hierarchical predicate
detection module. Figure 2 shows the overview of the proposed
method.

3.1 Hierarchical Concept Embedding
According to previous research on VRD [20, 40, 42], knowledge
transfer is critical to visual relationship detection in dealingwith the
large scale category space and extremely sparse data distribution. To
this end, word embedding [21, 22] becomes a widely used technique
in VRD as knowledge transfer medium, which encodes words with
a set of high-dimensional vectors and expresses semantic relation
in Euclidean space. However, an obvious defect of the existing
word embedding lies in its inability of encoding information with
complex spatial structure such as taxonomy.

The concept hierarchies provided by HVRD datasets are rep-
resented with tree structure, which is beyond the capability of
word embedding. So we utilize order embedding [31] to model
the unidirectional generalization/specialization relation among
the concepts in different abstraction levels. Here, we define spe-
cialization relation, µ1 ⪰ µ2, where µ2 is a specialized concept
of µ1 or the same concept as µ1. Then we have µ1 ⪰ µ1 (i.e.
reflexivity); µ1 ⪰ µ2 ⇒ µ2 ⪰̸ µ1 (i.e. antisymmetry); µ1 ⪰ µ2,
µ2 ⪰ µ3 ⇒ µ1 ⪰ µ3 (i.e. transitivity). Furthermore, we use
Tµ = {µ ′ : µ ′ ⪰ µ} to indicate order transitive closure of concept µ,
which contains µ and all the generalized concepts of µ.

We construct two high-dimensional positive embedding spaces
RN+ and RM+ for subject/object and predicate concept hierarchies in
the same fashion, where N is 600 andM is 300 in our experiments.
We define order distance D between different concept embedding
vectors as follows [31]:

D(δ (µ1),δ (µ2)) = | |max(0,δ (µ1) − δ (µ2))| |2, (1)

where δ (·) is order embedding function; | | · | |2 is L2 norm. If µ1 ⪰ µ2,
D(δ (µ1),δ (µ2)) is expected to be zero (minimum). Otherwise, it
is expected to be a positive value larger than a threshold β . In
optimizing phase, we use a lookup table to embed the concepts

with pairwise max-margin loss as follows [31]:

Lc ((µ,σ ), (µ̃, σ̃ )) = D(δ (µ),δ (σ ))+max{0, β−D(δ (µ̃),δ (σ̃ )), (2)

where (µ, σ ) and (µ̃, σ̃ ) are different concept pairs in the same
concept hierarchy and µ ⪰ σ , µ̃ ⪰̸ σ̃ ; β is margin threshold, which
equals 1 in our experiments.

3.2 Hierarchical Object Detection
Object detection is an essential part of visual relationship detection,
whose outputs are used to generate <subject, object> pairs as
relationship candidates. And it follows that object detection perfor-
mance determines the ceiling of relationship detection performance.
Existing VRDmethods may predict multiple categories for the same
object proposal, i.e. category agnostic bounding box, to decrease
false negative rate and increase the diversity of relationship
candidates, regardless of the potential incompatible predictions.
The aforementioned problem could be found in predicate detection
as well, which compromises the applicability of VRD. To tackle
this problem, we propose a novel hierarchical object detection
model, Hier-RCNN, using Fast-RCNN [27] as backbone, and making
full use of object concept hierarchies in HVRD datasets. Inspired
by [9], we trade off specificity for accuracy, which is perceived
as more important by VRD applications. Hier-RCNN is an order
embedding based object detection model which encodes visual
information with embedding vector, which implicitly represents
internal connections among hierarchical object concepts.

Visual embedding.We replace the classifier of Fast-RCNN [12]
with an embedding network, which is a two-layer fully-connected
neural network with ReLU activation, to project CNN feature into
object concept embedding space. In training phase, the visual object
instances are treated as specialization of their annotated categories.
Order distance D between visual embedding vector and annotated
concept embedding vector is minimized. We adopt a variant of
softmax loss function for optimization as follows [43]:

Le (µд ,x) = − log e−D(δ (µд ),ϵv (x))

e−D(δ (µд ),ϵv (x)) +
∑

µ′д<Tµд
e−D(δ (µ′д ),ϵv (x))

,

(3)



where x is the output of fc7 layer in VGG16 [30]; µд is the manual
annotated object concept; ϵv (·) is the visual embedding network;
µ ′д is incompatible concept to µд . It is worth noting that only the
most specific concepts are used as labels in training data while
the abstract concepts are learned without extra overhead. Due
to the transitivity of partial order relation, one training sample
with specific concept annotation is equivalent to a set of samples
with generalized concepts, which saves a considerable amount of
computation cost.

Greedy inference. With the visual embedding network, we
project visual features into concept embedding space and measure
the order distances between the visual embedding vector and
all concept embedding vectors. Then the classification problem
can be formed as concept retrieval [43]. Ideally, the distances to
positive concepts are smaller than those to negative concepts. Top-
k prediction is an intuitive and widely used strategy in retrieval.
However, a small number of high-accuracy object detections are
required to limit the number of relationship candidates. To this
end, we adopt a top-down greedy inferring procedure on the
concept hierarchy based on the distances, to predict single concept
by trade-off between specificity and accuracy. Specifically, we
calculate conditional probabilities P(µ |µρ ) for each non-root node
µ in concept hierarchy :

P(µ |µρ ) =
e−D(δ (µ),ϵv (x))∑

µc ∈Cµρ
e−D(δ (µc ),ϵv (x))

, (4)

where µρ is the directly generalized concept of µ; Cµρ is a set
of directly specialized concepts of µρ , which are siblings. We
determine each move along the top-down inferring path on concept
hierarchy by iteratively selecting concept nodes with the largest
conditional probabilities comparing to their siblings. Then we
obtain a set of prediction candidates Φ with different abstraction
like {“entity”, “coverinд”, ..., “pants”, “jeans”}. To determine single
concept prediction from Φ, we calculate semantic specificity reward
Q(µ) and conditional probability based information entropy E(µρ )
for all µ in ∆ respectively:

Q(µ) =
|Tµ |

max
µ̂ ∈Dµ

(|Tµ̂ |)
, (5)

E(µρ ) = −
∑

µ ∈Cµρ

P(µ |µρ ) log(P(µ |µρ )), (6)

where Dµ is the concept set containing µ and all descendant
concepts of µ;Q(µ) is positively associated with semantic specificity
of µ; E(µρ ) indicates risk of choosing µ at split µρ . We choose
concept µ̌ as the single concept prediction result from Φ by
balancing the risk and reward as follows:

µ̌ = arg max
µ

(Q(µ) · (1 − E(µρ ))),∀µ ∈ Φ. (7)

The confidence of concept prediction µ̌ is regularized as:

P(µ̌ |x) =
1

1 +D(δ (µ̌), ϵv (x))
, (8)

which ranges in (0, 1] and used to calculate the confidence of
relationship triplet predictions in Equation (11). The proposed
top-down greedy inferring procedure is of great importance in
its attempt to take both accuracy and specificity into consideration.

3.3 Hierarchical Predicate Detection
Hierarchical predicate detection module predicts predicates be-
tween the detected objects. The main differences between predicate
detection and object detection include: (1) predicates between
objects provide richer semantic information than single objects,
requiring more comprehensive features; (2) multi-predicate be-
tween the same object pair is common. Taking the differences
into consideration, we propose a hierarchical predicate detection
method adopting similar paradigm to Hier-RCNN, exploiting
the compatibility among hierarchical predicate concepts. The
proposed method consists of a visual embedding stream and a
language embedding stream, and combines implicit visual cue and
explicit language prior. Furthermore, with an accuracy oriented
sorting strategy, i.e. ordered instance sorting, accuracy is effectively
improved while recall of predictions is guaranteed.

Visual embedding. The basic visual feature we utilize is ROI-
pooled CNN feature [12] extracted from relation phrase [28], i.e.
union region of subject and object regions in image, which is widely
used by VRDmethods. However, this feature is unable to effectively
capture the context information. To provide richer visual cues, we
adopt a two-stage feature fusion, extended from [42]. In the first
stage, we use two independent CNNs to extract visual features
(xs , xo , xp ) for subject region, object region, and relation phrase
respectively instead of a shared network. This design delves into
the fact that appearance of individual object is vastly different
from that of relation phrase. We generate a (4096 × 3)-dimensional
feature vector f by concatenating the raw features (xs , xo , xp ).
In this way, local and global visual information complement each
other. Then we feed f into two fully-connected layers with ReLU
activation to generate low level hidden feature h which is a 600-
dimensional vector. In the second stage, we further concatenate
subject and object visual embedding vectors ϵv (xs ) and ϵv (xo )
with h to generate a implicit semantic and visual combined feature
x̃. At last, we project x̃ into predicate concept embedding space
with an embedding network ϵ ′v (·) whose structure is same as
ϵv (·). The visual embedding vector encodes various comprehensive
yet implicit features. Explicit information, on the other hand, is
generated via a language embedding stream as a complement.

Language embedding. Various language cues have been uti-
lized by existing VRD methods. The most intuitive language prior
is conditional probability based on statistics of training data, which
only captures the most frequently recurring relationship triplets
without any deduction capability. A more comprehensive idea is
to infer unseen relationship triplets by knowledge transfer from
the ones already appeared in training data with the help of word
embedding [20]. Widely used word embeddings are trained with
large scale textual data on the Internet, in which only unstructured
and sparse knowledge is contained. However, HVRD datasets
provide structural text data, i.e. object and predicate concept
hierarchies, which can serve VRD better. The problem mentioned
above may be eliminated by extracting and leveraging the structural
knowledge from the concept hierarchies of HVRD datasets.

Our model encodes the structural knowledge provided by con-
cept hierarchies with order embedding vectors, which significantly
improve the performance of our method in HVRD tasks and is
validated by the component analysis in Section 4.4. Specifically,



We concatenate subject and object concept embedding vectors as
language context feature and project it into the predicate concept
embedding space with a network ϵl (·), which is similar to ϵv (·) and
trained with the same loss function as in Section 3.2. We measure
the distances between language embedding vector and all predicate
concept embedding vectors. Finally, we combine the distances
measured by visual and language streams in a linear manner and
obtain the confidence scores for each predicate concepts:

S(µp , x̃,y) = γ · D(δ (µp ), ϵ
′
v (x̃) + (1−γ ) · D(δ (µp ), ϵl (y)), (9)

P(µp |x̃,y) =
1

1 + S(µp , x̃,y))
, (10)

where µp is predicate concept; x̃ is the visual feature mentioned in
Section 3.3; y is language feature; γ is a parameter, which is 0.3 in
our experiments. Triplet score is calculated as:

P(µs , µp , µo |xs ,xo , x̃,y) = P(µs |xs ) · P(µp |x̃,y) · P(µo |xo ). (11)

Ordered instance sorting.With confidence scores correspond-
ing to all predicate concepts, we apply the greedy inference
procedure introduced in Section 3.2 to iteratively generate n
predicate predictions for each object pair. n is the maximum of
predicate predictions, which is equal to |Cµr |, where µr is the root
concept. For each iteration, we collect all the chosen concepts at
each split along the inferring path, i.e. the concept candidate set Φ,
and set the status of concepts in Φ as visited. In a new inference
iteration, the visited concepts are eliminated. In the relationship
instance sorting phase, we split the relationship instances into
n batches according to the index of iteration from which their
predicates are chosen. The batch corresponding to early iteration is
ranked near the top. Within each batch, the relationship instances
are ranked according to their confidence scores. The design logic is
that we place accuracy first and iteratively supplement predicates
for each object pair to improve diversity. In this way, false positive
rate is effectively controlled.

4 EXPERIMENTS
4.1 Tasks
As defined in Section 1, the input of HVRD is a given image, and
its output is a list of relationship instances. A detected relationship
instance is judged as correct if the detected subject and object
boxes spatially hit a groundtruth relationship boxes respectively,
i.e. the IoUs exceed a threshold, and predicted relationship triplet is
compatible to the groundtruth relationship triplet associated with
the hit subject and object boxes. The threshold for IoU is set as 0.5
in our experiments, the same as VRD.

Considering object detection’s heated status, especially in open-
ended category space, we conduct our experiments in another
task called hierarchical predicate detection (HPD) to emphasize the
effectiveness in object interaction recognition. Predicate detection
has been widely used in the existing works of VRD [4, 14, 17, 20,
35, 37, 41, 45]. The input of predicate detection is a pair of localized
objects with their categories, and its output is the predicate(s)
between the objects.

4.2 Evaluation Criteria
The common evaluation criterion for VRD task is Recall@N (k=m).
Here, N denotes the maximal number of relationship instances
allowed to return on the whole image;m is a fixed value, which is set
to 1, i.e., only one relationship instance for a pair of objects allowed
to return, or is set to the number of all the possible predicates, e.g.,
on VRD dataset [20], k=70. However, in VRD task, m as a fixed
value is not a suitable option, because the number of the annotated
relationship instances on a pair of objects can be arbitrary. If m
is defaulted to 1, it is too rigid to evaluate the performance of
VRD methods to explore multiple relationship instances on a pair
of objects; if m is set to present the number of all the possible
predicates, it may be so flexible that incorrect relationship instances
are encouraged to return to increase recall. Hence, we use k=α in
our experiments, here α is an adaptive number for each pair of
objects which is equal to the number of the annotated relationship
instances on the object pair. With the adaptive α , the evaluated VRD
methods are encouraged to generate more accurate relationship
instances and to guarantee high recall at the same time.

SGGen+ is an improved evaluation criterion proposed by Yang et
al [34], based on an observation that minor mistakes in object
recognition will lead to severe punishment in conventional VRD
evaluation. However, this problem can be solved naturally with the
assistance of semantic hierarchy in HVRD task settings. We define a
new evaluation criterion named H -Recall@N (k=α), which adopts
a soft judgment strategy. To each annotated relationship instance
дi in groundtruth, we calculate its hit score s(дi ) as follows:

s(дi ) = max
rk ∈Rαi

φ(дi , rk ), (12)

where Rαi denotes the set of detected relationship instances, whose
bounding box IoUs on subject and object to the ones of дi both
exceed the predefined threshold, with the top αi confidences; αi
denotes the number of groundtruth relationship instances which
have the same subject and object to дi ; φ(, ) denotes the semantic
similarity between two relationship instances in HVRD task, which
is calculated as the mean value of the similarities between their
subjects, predicates and objects:

φ(д, r ) =

{
0, φS (д, r ) · φP (д, r ) · φO (д, r ) = 0,
1
3 (φ

S (д, r ) + φP (д, r ) + φO (д, r )), otherwise,
, (13)

whereφS (д, r ),φP (д, r ) andφO (д, r ) denote the similarities between
the subjects, predicates and objects of two relationship instances д
and r in object concept hierarchy and predicate concept hierarchy,
respectively. The calculation of φS (д, r ), φP (д, r ) and φO (д, r ) are
similar, e.g., the calculation of φS (д, r ) is as follows:

φS (д, r ) =


drS
dдS
, rS ∈ TдS ,

0, otherwise,
, (14)

where дS and rS denote the subjects of д and r , respectively; TдS
denotes the transitive closure of дS in object concept hierarchy;
dдS and dr S denote the distances from the concept “entity” to
дS and rS in object concept hierarchy, respectively. Note that
we only use φP (д, r ) as the evaluation criterion in HPD task, i.e.,
φ(д, r ) = φP (д, r ) in Equation (13). Based on Equation (12)-(14), we
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Figure 3: Qualitative results on H-VRD dataset. The green boxes show the groundtruth relationship triplets and the red boxes
show the hierarchical relationship triplets predicted by the proposed method with evaluation scores.

can calculate H -Recall@N (k=α) as follows:

H -Recall@N (k=α) =
1
|G |

∑
s ∈SNG

s, (15)

whereG denotes the set of relationship instances in groundtruth;
SNG denotes the set of hit scores of all the groundtruth relationship
instances in G according to the top-N predictions with the highest
scores, which are calculated by Equation (12).

To be compatible with the existing evaluation criterion in
hierarchical object detection [9], we also use another criterion
B-Recall@N (k=α) in our experiments. B-Recall@N (k=α) extends
the definition of binary recall criterion in hierarchical object
detection evaluation to HVRD evaluation, which is calculated by
binarizing the hit score in Equation (12), i.e., if positive, s(дi ) is set
to 1, otherwise 0.

4.3 Datasets
Visual Relationship Detection (VRD) dataset [20] and Visual
Genome (VG) dataset [15] are two widely used datasets in visual
relationship detection. Specifically, VRD dataset contains 5,000
images, 100 object categories, 70 predicate categories and 37,993
relationship instances among 6,672 unique triplets. VG dataset
contains 99,658 images with abundant noisy relationship anno-
tations described with natural language. Based on VRD dataset and
VG dataset, we construct two datasets for HVRD, named H-VRD
and H-VG, by expanding their flat relationship category spaces
to hierarchical ones, respectively. To the best of our knowledge,
H-VRD and H-VG are the first HVRD datasets.

The hierarchical relationship category spaces in both H-VRD
dataset and H-VG dataset consist of two parts, i.e., object concept
hierarchy and predicate concept hierarchy. First, we construct
the object concept hierarchy by associating raw object categories
to WordNet synsets. We use WordNet package of NLTK [19] for
automatic association and obtain a directed concept graph initially.
The directed edge indicates generalization/specialization relation
between two concepts on each side of it. As for the concept nodes
with multiple parents caused by polysemous phenomenon, we
manually select the most appropriate ones and obtain a single-
root tree structure. The most abstract concept in object concept
hierarchy is “entity”. Next, we construct the predicate concept
hierarchy with an intuitive strategy, similar to the construction
of object concept hierarchy. The most abstract concept in the

predicate concept hierarchy is named “interaction”, which is further
divided into four high level concepts, namely “action”, “spatial”,
“possession” and “comparative”. All transitive verbs belong to the
category of “action”. Simple spatial relations are associated with
the category of “spatial” (e.g. “under” and “above”). “Possession”
comprises near-synonymy predicates, such as “has” and “with”.
The last category of “comparative” consists of comparative phrases,
such as “taller than”. It is worth noting that the phrases with
the combination of prepositions and verbs are also taken into
consideration, e.g., “stand next to” and “sit on” are associated
with “next to” and “on” respectively. The intransitive verbs are
left out of the aforementioned categories, as they are more likely to
characterize the action states of subjects rather than the interaction
with objects.

The constructed H-VRD dataset contains 5,000 images with
155 hierarchical object concepts and 80 hierarchical predicate
concepts. It contains 37,993 relationship instances among 6,672
unique relationship triplets. The distance from the concept “entity”
to the leaf object concepts in object concept hierarchy ranges from
3 to 10 at an average of 7.3, and the distance from the concept
“interaction” to the leaf predicate concepts in predicate concept
hierarchy varies between 3 and 6, at an average of 3.9. The H-VRD
dataset is randomly divided into training and test sets with 4,000
and 1,000 images respectively. Considering the extremely large scale
of VG dataset, we construct H-VG dataset on the pruned version
provided by [40]. The constructed H-VG dataset contains 99,658
images with 301 hierarchical object concepts and 118 hierarchical
predicate concepts. It contains 1,174,692 relationship instances
among 19,237 unique relationship triplets. The distance from the
concept “entity” to the leaf object concepts in object concept
hierarchy ranges from 3 to 12, at an average of 7.7, and the distance
from the concept “interaction” to the leaf predicate concepts in
predicate concept hierarchy varies between 3 and 5, at an average
of 4.0. We split H-VG dataset into training and test sets with 73,801
and 25,857 images respectively.

4.4 Component Analysis
There are three key components in the proposed method: feature
representation, hierarchical relationship triplet recognition, and
relationship instance sorting. We validate their influences on the
performance of our method in HPD and HVRD tasks on H-VRD
dataset.



Table 1: Evaluation of our method with different components in HPD and HVRD tasks on H-VRD dataset. HR@N and BR@N
are the abbreviations of H -Recall@N (k=α) and B-Recall@N (k=α), respectively.

Method HPD HVRD
HR@50 HR@100 BR@50 BR@100 HR@50 HR@100 BR@50 BR@100

PD-V 56.96 56.96 62.04 62.04 15.37 17.70 16.49 18.96
PD-L 58.93 58.93 64.75 64.75 14.56 17.75 15.59 19.02

Ours\HR 57.82 57.82 60.93 60.93 11.99 14.46 12.23 14.75
Ours-HOR 57.82 57.82 60.93 60.93 13.59 17.26 14.34 18.25
Ours-HPR 60.28 60.28 66.20 66.20 14.77 16.76 15.23 17.27
Ours-mix 60.31 60.32 66.28 66.29 15.56 18.24 16.64 19.51
Ours 60.28 60.28 66.20 66.20 15.94 18.66 17.03 19.94

Feature representation. The proposed method extracts two
types of features for HVRD: visual feature and language feature.
The former is used for both subject/object detection and predicate
detection, and the latter is only used for predicate detection. As
visual feature is indispensable for subject/object detection, we
construct two varieties of our method by using different features
for predicate detection: visual feature only (PD-V) and language
feature only (PD-L).

The top two rows in Table 1 show the performance of these two
baselines, and the last row in Table 1 shows the performance of
our method. We can see that visual feature and language feature
complement each other, and our method obtains best performance
by fusing the two kinds of features. It validates the effectiveness of
both the visual feature and the language feature.

Hierarchical relationship triplet recognition. Hierarchical
relationship triplet recognition is the core module of our method,
which consists of two components: hierarchical object recognition
(HOR) and hierarchical predicate recognition (HPR). The former
recognizes the subject and the object in a relationship triplet with
the assistance of object concept hierarchy, and the latter recognizes
the predicate in a relationship triplet with the assistance of predicate
concept hierarchy. To validate their effectiveness, we generate three
baselines: using neither of HOR nor HPR (Ours\HR), HOR only
(Ours-HOR), and HPR only (Ours-HPR).

The third to fifth rows in Table 1 show the performance of
these three baselines. There is little room for doubt that both HOR
and HPR can provide significant improvement in HVRD task by
comparing the performance of Ours-HOR and Ours-HPR to that of
Ours\HR, and our method obtains the best performance by using
HOR and HPR together. However, it should be noted that there is no
improvement by using HOR only (compare Ours\HR vs.Ours-HOR)
or together with HPR (compare Ours-HPR vs. Ours) in HPD task,
because the categories of subjects and objects are given in HPD
task. It shows that the two components in hierarchical relationship
triplet recognition are both effective in HVRD task.

Relationship instance sorting. Our method uses an ordered
sorting strategy to enhance the diversity of detected relationship
instances. To validate its effectiveness, we generate a baseline by
mixing all the detected relationship instances in sorting (Ours-mix).

The sixth row in Table 1 shows the performance of Ours-mix,
which apparently degrades on HVRD and slightly increases on
HPD as compared to that of Ours. Both sorting strategies can
improve the performance of our model. The results show that mixed
sorting strategy only takes effect when handling small number

of predictions, however impractical in application scenario. The
proposed ordered sorting strategy shows enhanced robustness.

4.5 Comparison with State-of-the-Arts
We compare the performance of the proposed method with four
state-of-the-artmethods, namely Lu’s [20], VTS [40], DR-net [5] and
DSR [17], in HPD and HVRD tasks on both H-VRD dataset and H-
VG dataset. It should be noted that we only compare with VTS and
DSR on H-VG dataset because they can be evaluated on the cleaned
version of VG provided by [40] with relatively less adaptation.
Since all these methods aimed at the conventional VRD tasks, we
adapt them to satisfy the requirements of HVRD tasks so that the
compared methods can also generate hierarchical predicates and
hierarchical visual relationship instances with the assistance of
object concept hierarchy and predicate concept hierarchy. Besides,
to eliminate the influence of object proposal, which is still an open
problem, we provide the same object proposals for all methods in
our experiments to make pair comparison.

Figure 3 shows some qualitative results of the proposed method
on H-VRD dataset. Table 2 and Table 3 show the comparison
results on H-VRD dataset and H-VG dataset, respectively. From
the comparison results, we conclude that:

(1) Our method is superior to the state-of-the-art baselines on all
the evaluation criteria in both HPD and HVRD tasks. For instance,
in HPD task, our method improves the performance by 6.05% and
11.41% on HR@100 and BR@100 respectively as compared to the
top-performing baseline (DSR) on H-VRD dataset; and in HVRD
task, our method improves the performance by 1.76% and 2.44%
on HR@100 and BR@100 respectively as compared to the top-
performing baseline (DR-net) on H-VRD dataset.

(2) All the B-Recall values are larger than the corresponding
H-Recall values by reasonable margins according to the evalua-
tion results of our method. For instance, Table 2 shows that B-
Recall@100 is larger than H-Recall@100 by 5.92% and 1.28% in HPD
task and HVRD task on H-VRD dataset respectively. It shows that
our method explores and utilizes both object and predicate concept
hierarchies effectively. Since the correct generalized relationship
triplets are treated equally to the specific ones in B-Recall criteria,
on the one hand, higher B-Recall criteria means that our method
can predict correct generalized predicates and relationships. On
the other hand, the margins between the H-Recall values and the
B-Recall values are reasonable means our method achieves higher
correctness while the semantic specificity of the predictions are
guaranteed. An intuitive trick, in which only the most generalized



Table 2: Evaluation of different methods in HPD and HVRD tasks on H-VRD dataset.

Method HPD HVRD
HR@50 HR@100 BR@50 BR@100 HR@50 HR@100 BR@50 BR@100

Lu’s 50.32 50.32 50.75 50.75 13.81 14.92 13.84 15.26
VTS 50.08 50.08 50.59 50.59 11.84 13.95 12.04 15.15

DR-net 53.62 53.62 54.02 54.02 14.80 16.90 14.84 17.50
DSR 54.19 54.23 54.71 54.79 14.64 16.82 14.68 17.46
Ours 60.28 60.28 66.20 66.20 15.94 18.66 17.03 19.94

Table 3: Evaluation of different methods in HPD and HVRD tasks on H-VG dataset.

Method HPD HVRD
HR@50 HR@100 BR@50 BR@100 HR@50 HR@100 BR@50 BR@100

VTS 64.44 64.66 65.24 65.47 6.19 8.17 6.21 8.63
DSR 64.27 68.56 65.12 69.47 0.31 0.57 0.32 0.57
Ours 73.89 73.99 76.11 76.25 9.40 11.29 9.77 11.74

Table 4: Evaluation of different methods in PD and VRD tasks. R@N is the abbreviation of Recall@N (k=α).

Method
PD VRD

VRD dataset VG dataset VRD dataset VG dataset
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

VTS 48.30 48.30 61.26 61.47 10.64 11.29 5.98 7.32
DSR 51.52 51.54 60.99 65.08 14.10 15.55 0.30 0.52

Ours\HR 53.75 53.75 71.01 71.13 13.29 14.69 8.76 10.22
Ours 45.78 45.78 64.00 64.16 3.65 4.38 3.44 4.30

relationship triplet, i.e. <entity, interact, entity>, is predicted, can
obtain very high B-Recall values. However, the corresponding H-
Recall values will drop dramatically because of the extremely low
specificity of the triplet predictions.

4.6 Discussion
An interesting question about our method is whether it is effective
in conventional predicate detection (PD) and VRD tasks, though
it is proposed for HVRD task. To validate its performance in these
tasks, we remove the hierarchical relationship triplet recognition
module from our method, i.e., using the Ours\HR in Table 1. We also
define a criterion Recall@N (k=α), which follows the definition of
recall criterion in VRD evaluation by only replacing k=m with
k=α . It is calculated by replacing the similarity measurement
in Equation (13) with the requirement of the same relationship
triplets in the detected relationship instance and the groundtruth
relationship instance, i.e., φ(д, r ) is equal to 1 if the relationship
triplets of д and r are the same, and 0 otherwise. We compare our
method with two state-of-the-art methods, VTS [40] and DSR [17],
on VRD and VG datasets. Table 4 shows the comparison results. We
can see that our method obtains comparable results in most cases
and even outperforms the state-of-the-arts, e.g. R@50 and R@100 in
predicate detection task on VRD and VG datasets. The results lead
to the thinking that whether HVRD is more meaningful compared
with VRD, or in other words, whether HVRD helps to explore more
relationship instances with correct description of image content.
From Table 2 to 4, we can see that all the methods have shown
evident improvements in performance on the criteria of HR@N
as compared with the corresponding ones of R@N. There is some

doubt that the improvement on HR@N is caused by considering
the generalized relationship instances, which are ignored in the
calculation of R@N criteria even these relationship instances are
also detected. Such a situation is hardly possible to occur because
the generalized concepts of both object and predicate are not
considered in VRD, which assumes exclusive object and predicate
categories. Hence, the improvements on HR@N criteria indicate
the meaning of HVRD in exploring more relationship instances
with correct description.

5 CONCLUSION
In this paper, we proposed a novel VRD task, namely HVRD,
which aims to tackle the ambiguity of manual annotation by
exploiting the compatibility of relationship triplets with concept
hierarchies. We also generated the first datasets, H-VG and H-
VRD, for HVRD evaluation. Moreover, we proposed the first HVRD
method consisting of hierarchical object detection module and
hierarchical predicate detection module based on order embedding.
The experiment results show that our method is superior to the
state-of-the-art baselines.
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