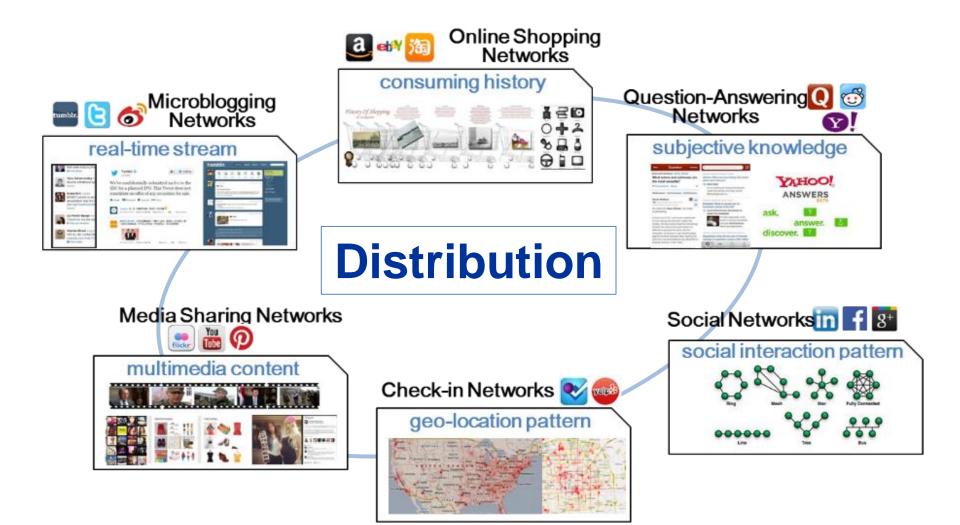


Hashtag-centric Immersive Search on Social Media

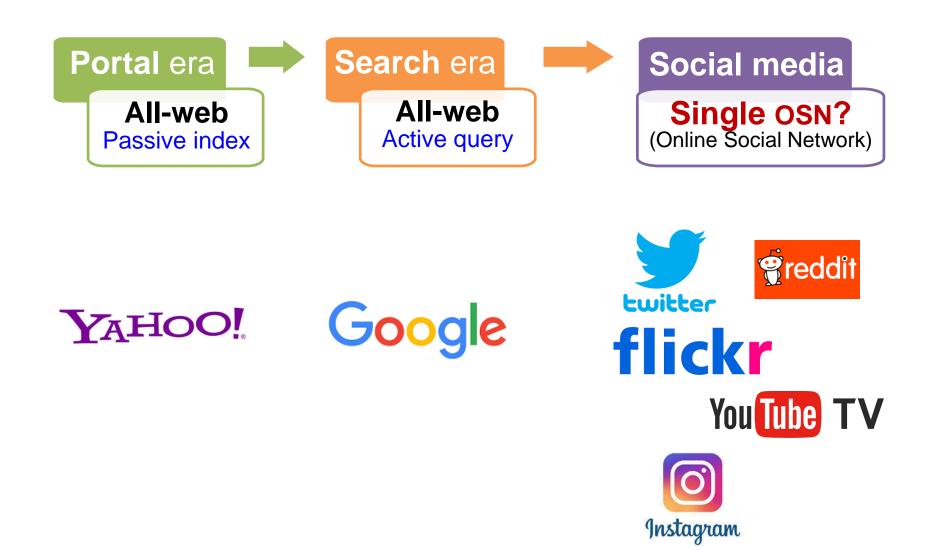
Yuqi Gao, Jitao Sang, Tongwei Ren, Changsheng Xu State Key Laboratory for Novel Software Technology, Nanjing University National Lab of Pattern Recognition, Institute of Automation, CAS

Information: Multi-modality → Multi-source



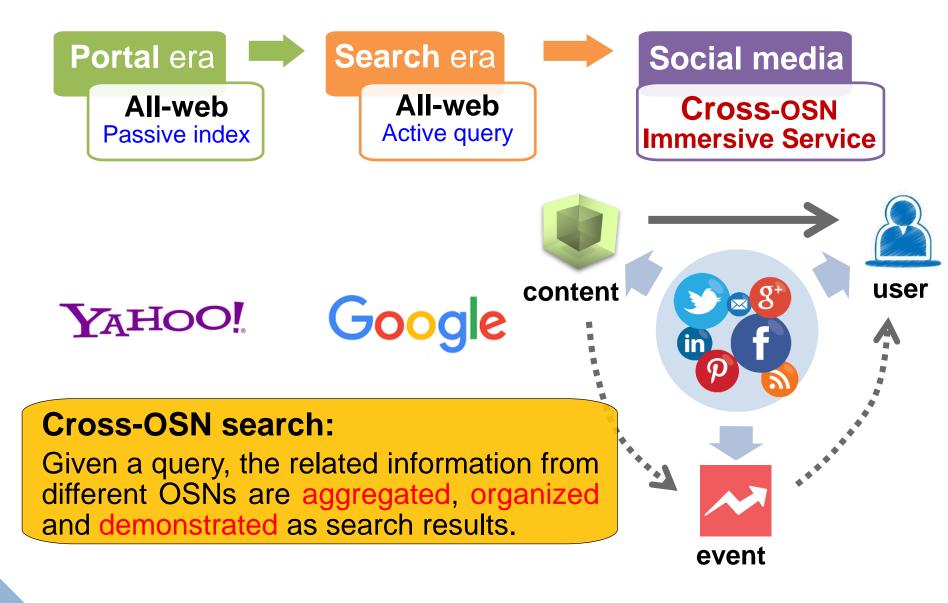
Information: Multi-modality → Multi-source

Immersive Information Access



6

Immersive Information Access



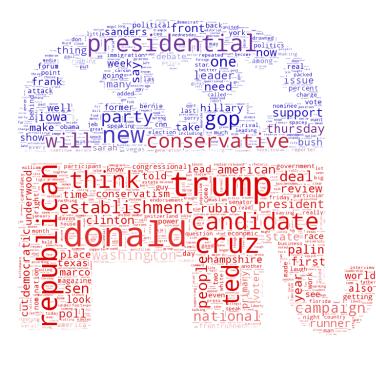
Challenge: Relevance & Organization

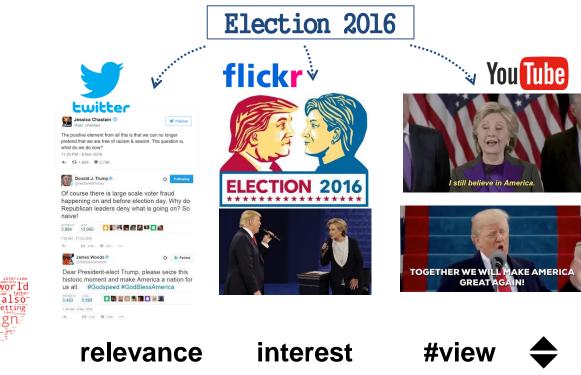
Relevance

Noisy and biased results

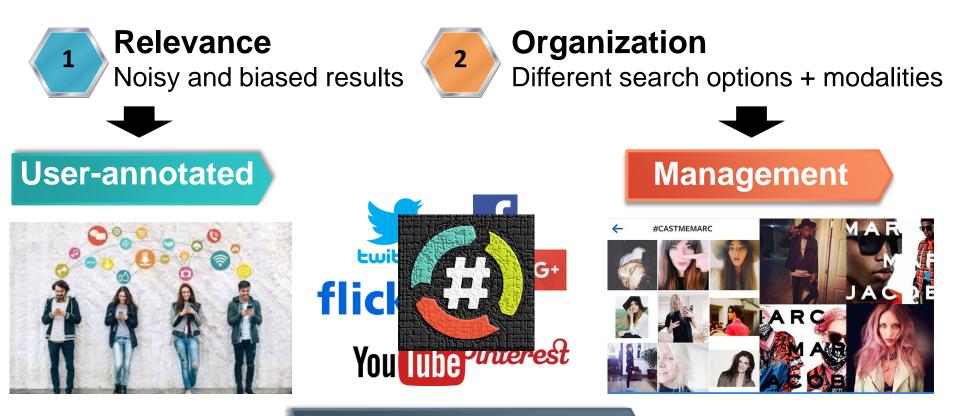
Organization

Different modalities + search options





Hashtag: UGC Annotation + Management

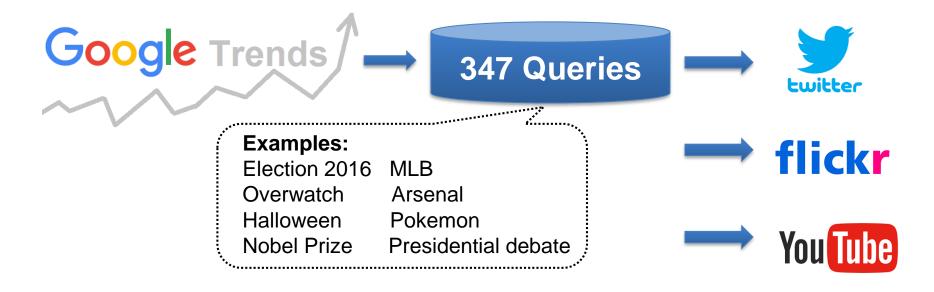


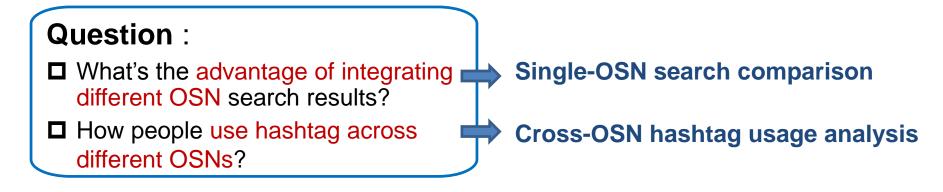
naturally **Cross-OSN**

Motivation:

We exploit hashtag as bridge for cross-OSN information integration and demonstration.

Data Collection

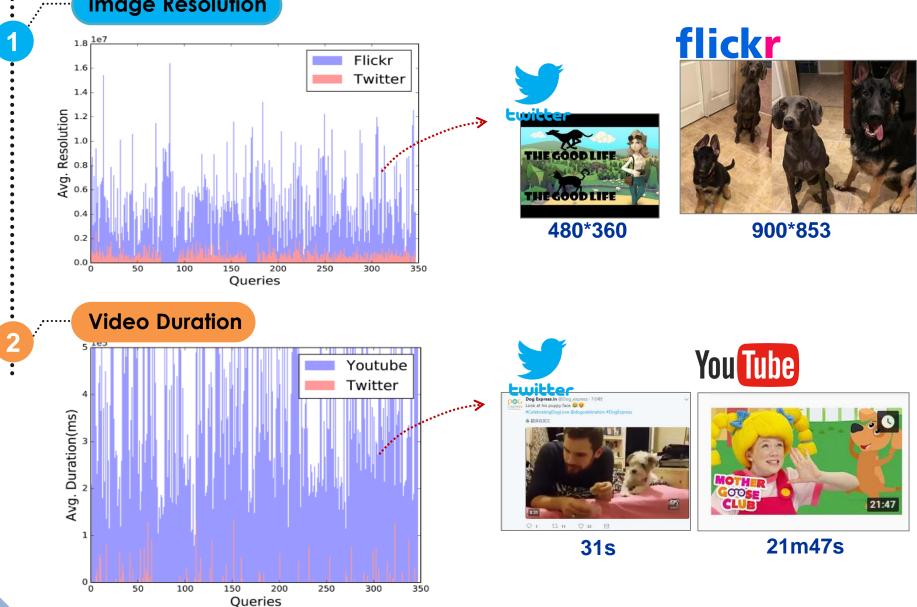




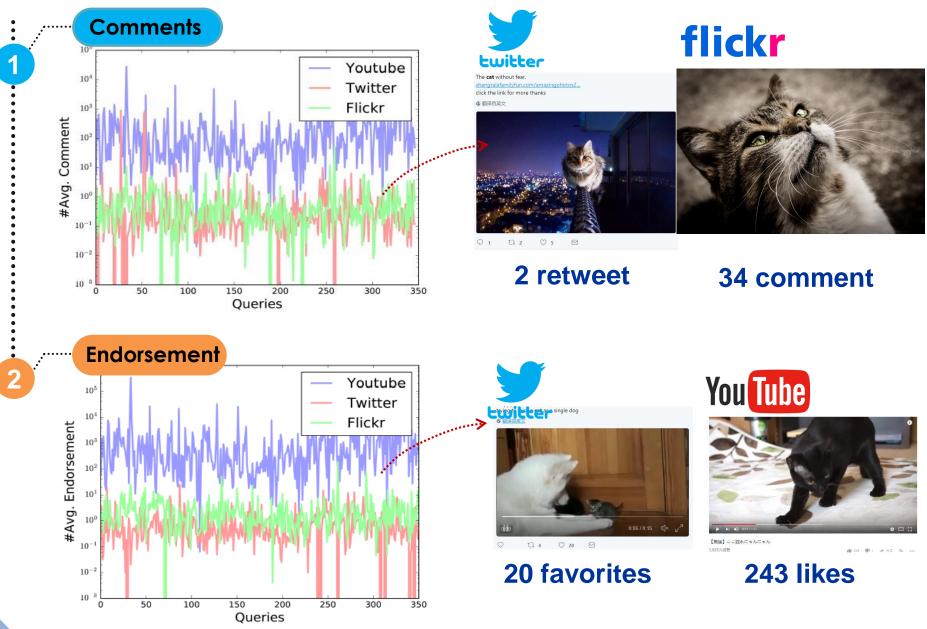
Single-OSN Search Comparison: Information Richness

Image Resolution

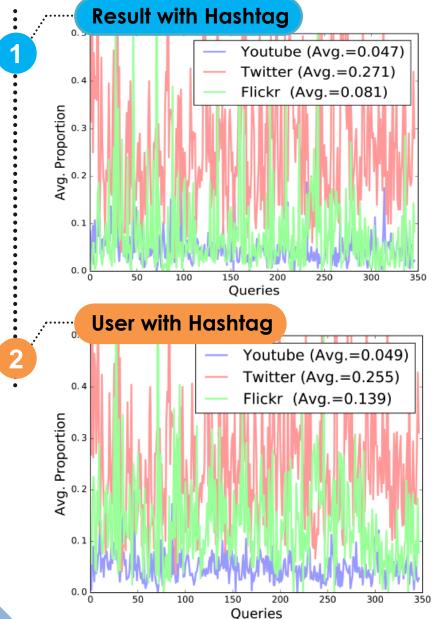
12

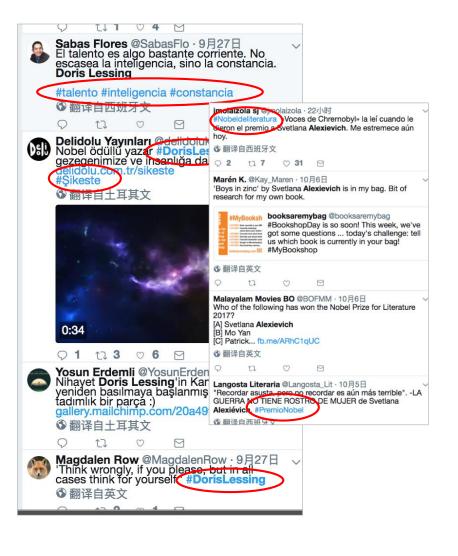


Single-OSN Search Comparison: User interaction



Cross-OSN Hashtag Usage Analysis: Popularity





Cross-OSN Hashtag Usage Analysis: Diversity (1)

#Unique Hashtag (per query)

YouTube	Twitter	Flickr	
17.77	28.42	27.61	

Hashtag from search result of "Arsenal" (Partially)

Twitter	Flickr	YouTube
#EPL	#AlwaysTimeForCakevia	#afc
#RealMadrid	#alexanderhleb	#LIVE
#CristianoRonaldo	#wilshere	#Ludogorets
#AFC	#manchest	#PES2017
#Arsenal	#London	#MarqueeMatchups
#soccer	#MUFC	#EPL
#COYG		#COYG
#FootballNews		#SFC

Cross-OSN Hashtag Usage Analysis: Diversity (2)

NFr score of cross-OSN lists μ_1, μ_2

YouTube&Flickr	Twitter&YouTube	Flickr&YouTu	be
0.1006	0.0857	0.0375	
$NFr(\mu_1, \mu_2) = 1 - \frac{Fr^{ S }(\mu_1, \mu_2)}{max} Fr$ $Fr^{ S }(\mu_1, \mu_2) = \sum_{i=1}^{ S } \mu_1(i) - \mu_2(i)$ $Fr^{ S } \text{ equals } 1/2 S ^2 \text{ when } S $ $Fr^{ S } \text{ equals } 1/2(S + 1)(S)$	i) is even	You Tube #NH #Dixville #merger	#Calexit #iamelectionready #PresidentTrumpElection #notmypresident #lamwithHer #NeverTrump #dumptrum #election2016
		#ImVotingBecause #Decision2016 #USElections	#Election2016 #NotMy

twitter

Hashtags from search result of "Election 2016" from different OSNs

#caliexit

#california

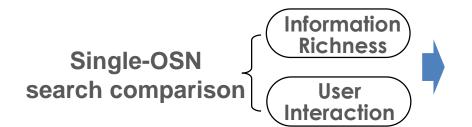
#PresidentTrump

#Pence #MAGA

#DrainTheSwamp

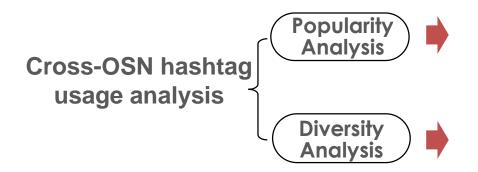
flickr

Data Observations



Necessity

- Guarantee a better multi-modal search experience
- Enable more advanced features like social interaction



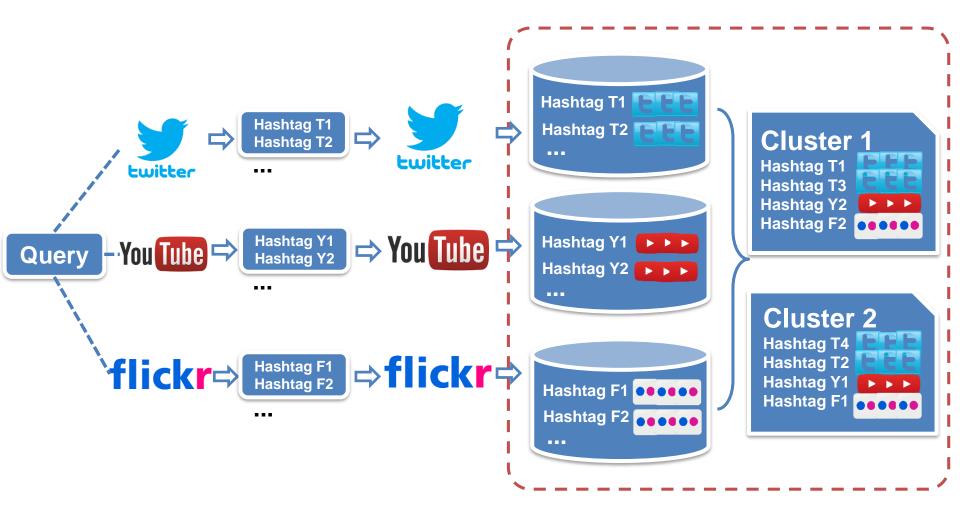
Feasibility

Hashtag is widely used across different OSNs.

Inspiration to Solution

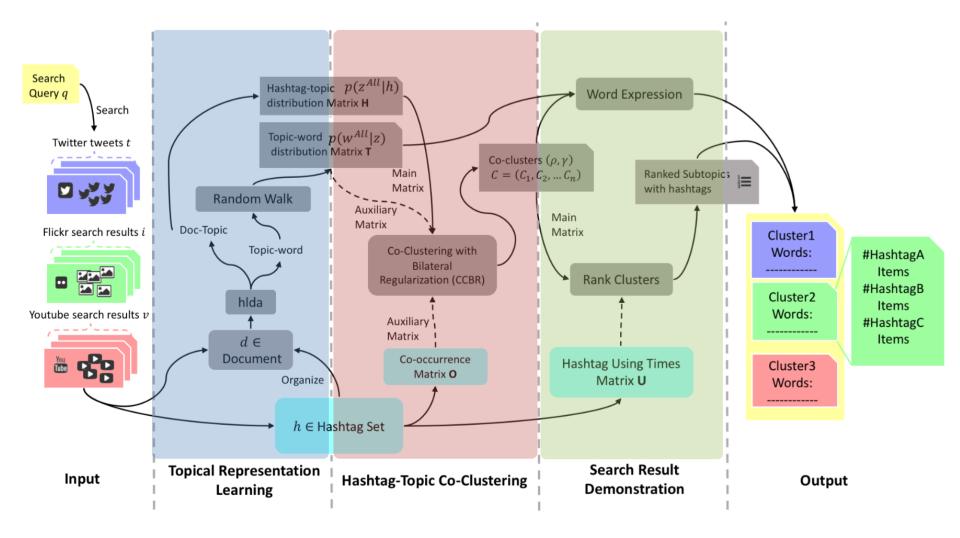
- ☐ Multiple hashtag → finegrained semantic exploration;
- □ OSN-distinctive hashtag →higher topic level for integration.

Data Flowchart

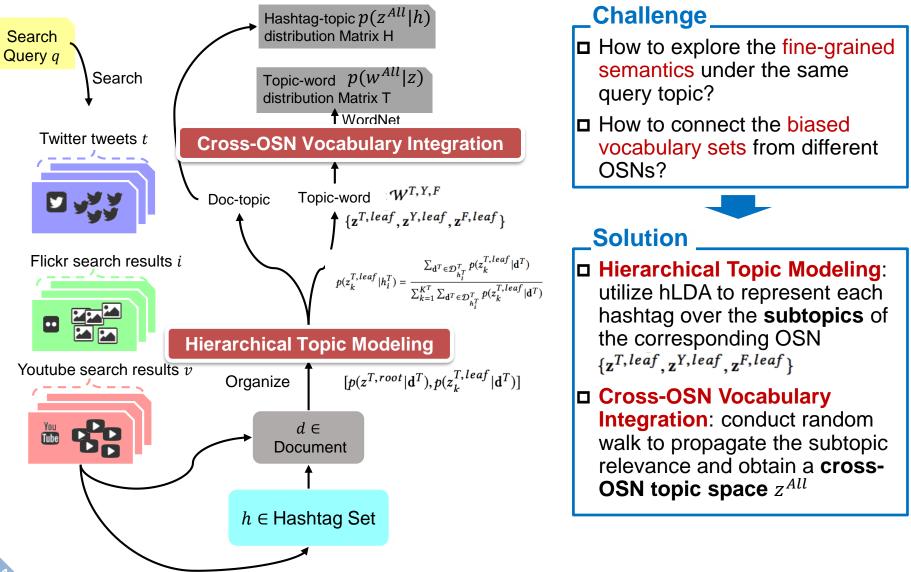


Hashtag Clustering

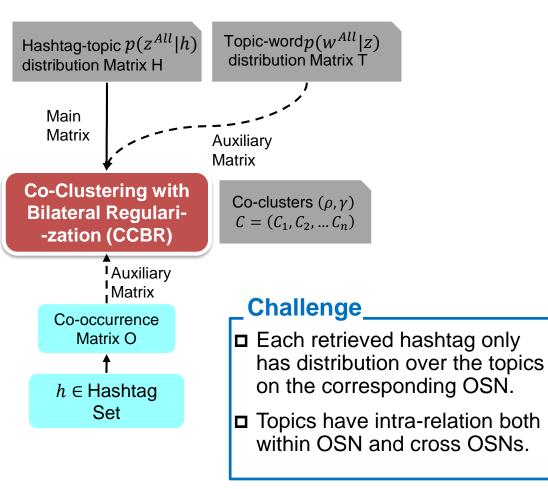
Solution Framework



Stage 1: Topical Representation Learning



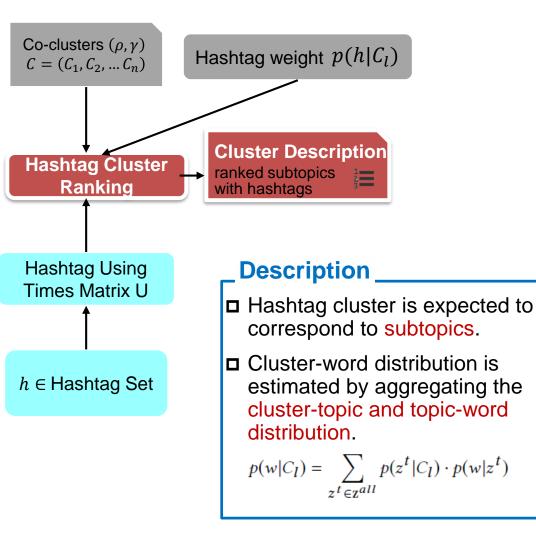
Stage 2: Hashtag-Topic Co-Clustering



Solution

- Hashtag-topic Co-Clustering: cluster cross-OSN hashtags and topics simultaneously;
- Co-Clustering with Bilateral Regularization (CCBR)
- Regularizing topic semantic relation for column/topic <u>clustering</u>: topic-hashtag involvement + topic-word distribution;
- ② <u>Regularizing hashtag co-occurrence for row/hashtag clustering</u>: hashtags that co-occurring in the same item have high probability to contribute to the same subtopic.

Stage 3: Search Result Demonstration



Organization

□ Cluster - Hashtag - Item

- Items within unique hashtag are organized chronologically.
- Hashtags within unique cluster are organized via clusterhashtag weight p(h|Cl).

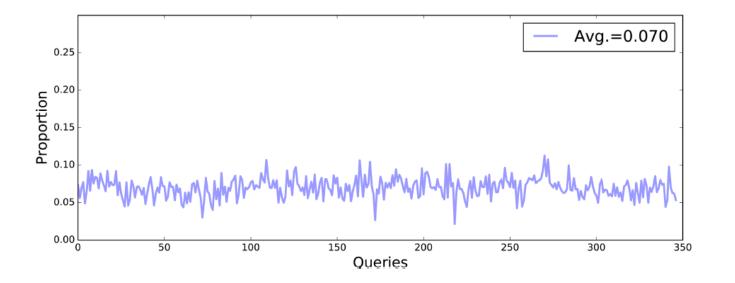
Cluster Ranking:

- Popularity constrain: cluster with more hashtag-annotated items in the search result set should be ranked higher;
- ② <u>Smooth constrain</u>: clusters with similar semantic relation deserve close ranks.

$$\kappa_{ij} = exp(-\frac{\sum_{z^t \in \mathbf{z}^{all}} (p(z^t | C_i) - p(z^t | C_j))^2}{2\sigma^2}$$

Vocabulary overlap proportion.

It is shown only about **7%** vocabulary is shared between the three OSNs, which validates the necessity for random walk-based vocabulary integration.



Results of Topical Representation Learning

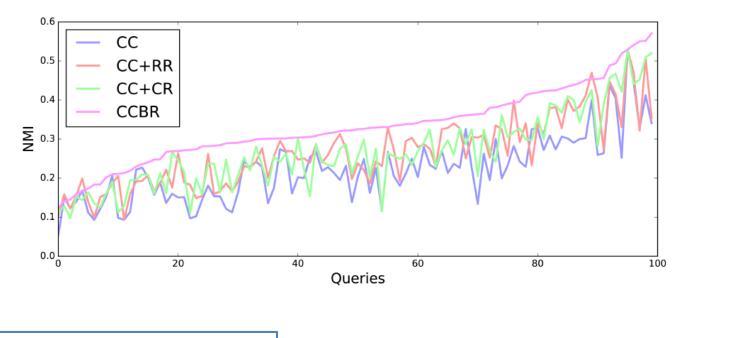
Derived topics for query "Election 2016".

- □ The discovered topics have a wide coverage.
- Random walk connects between different vocabulary spaces and enhances the topic representation with cross-OSN words.

Platform	Topic	
Twitter	ranks,states,worldpolitics,meet	Twitter
	published, <mark>newsletter</mark> , history,online,	Twitter
Flickr	million,trump,election,votes,riches	Flickr
	nation,people,language,americanelection	
Youtube	trump,donald,live,rally,presidenttrump,	YouTube
	country,children, feel,hold, citizens,	

Results of Hashtag Clustering

- CC: original Bregman Co-Clustering
- CC+RR: Co-Clustering with hashtag co-occuRrence Regularization
- CC+CR: Co-Clustering with intra-topic Correlation Regularization
- CCBR: Co-Clustering with Bilateral Regularization

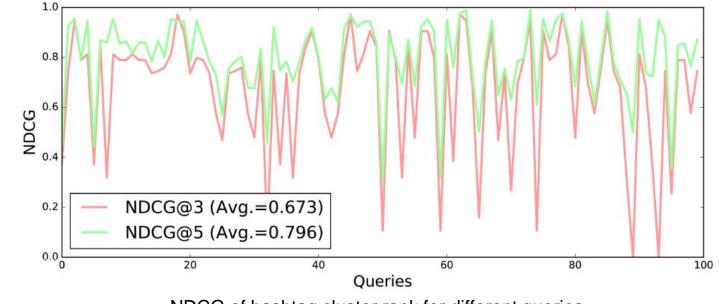


Negative Pearson correlations indicate that queries with larger #hashtag have a lower NMI

Method	CC	CC+CR	CC+RR	CCBR
NMI & #hashtag	-0.689	-0.633	-0.643	-0.526

Pearson correlation coefficient

Search Result Demonstration



NDCG of hashtag cluster rank for different queries

- NDCG@5 = 79.6%: the cluster rank solution is reasonable and practical in real application. (most queries have a ground-truth of 5-9 clusters).
- □ When only examining the rank-1 cluster, the proposed rank method achieves performance with average NDCG@1=37%.

Demonstration: Cluster-Hashtag-Item Hierarchy

https://hashtagasbridge.github.io/Hashtag

Clusters Click for more information		🌆 Home > C	lusters
Cluster 1 history ; online ; dixville More info 👁	Cluster 2 voting ; elections ; election More info O		
Cluster 3 caliexit ; uma ; web ; caliexit ;california More info O		o; trends; rate; trump;maga More info ♥	
Cluster 5 isupporther ; support ; decision ; clinton More info	······	Hashtags and Items Query Election 2016 Hashtags from Twitter 23 Hashtags from Flickr 26	Home From Twitter Thu Feb 16 23:17:04 Gorgeous photo from The Balsams Resort! #dixville #notch #winter https://t.co/J6vrsaNMJ1 #NH From Twitter
		Representative hashtags Twitter Election2016 @MAGA #USElections Youtube PresidentTrump Belection2016 PrecidentTrump Selection2016	Fri Feb 24 07:35:22 #Manchester #NH #USA - Inventory Associate - #Job Description Our client an international manufacturer is http://fri Feb 24 00:01:00 #US & #Canada railroads welcome #Thomas in #AL #CA #CT #FL #IN #IA #KS #MD #MN #NH #NY #PA #TN #TX #AB # https://t.co/xleEpRWybQ #history From Twitter
		Flickr fdumptrump selection2016 scalicsit	Fri Feb 24 08:03:21 Check out what happened on this date in weather #history! #miwx #wmiwx @wzzm13wx https://t.co/BZ4aZWiEII Fri Feb 24 08:03:12

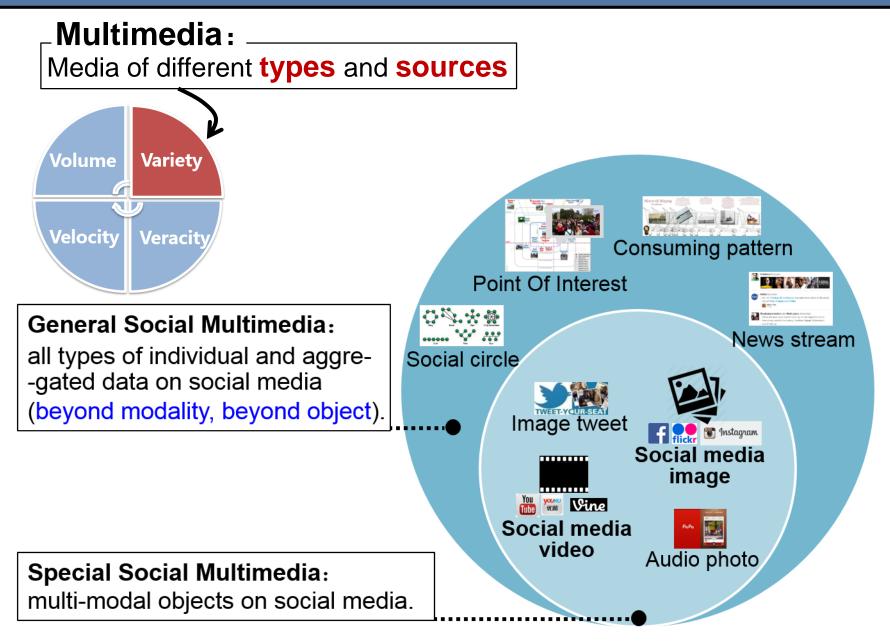
Contribution:

- Discussed and analyzed the <u>Cross-OSN hashtag usage;</u>
- Positioned the problem of <u>Cross-OSN immersive search</u>, and introduced a preliminary hashtag-centric solution.

Limitation:

- □ **Time cost**: the first stage of cross-OSN topical representation learning prevents a practical solution.
- Narrow focus on event queries: remains unknown whether can apply to general queries.
- Insufficient utilization of contextual data, e.g., time (enable topic evolution), hyperlink (for better clustering).
- Lack of exploiting representative OSN features, e.g., Twitter list, Flickr group, YouTube channel, authoritative Users.

Social Multimedia: Special General



General Social Multimedia Analysis

D WEB1.0

- Data is professionally edited.
- Core problem is media understanding.

Web Multimedia

Social Multimedia

- □ Interaction is key.
- User contributes to data generation.
- User modeling is one basic problem.

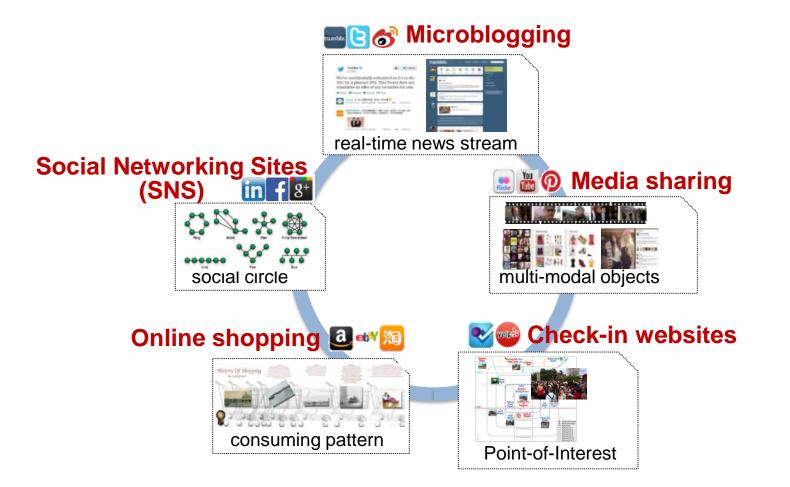
Media type: beyond modalities.

- Granularity: beyond objects.
- Association: beyond semantic.

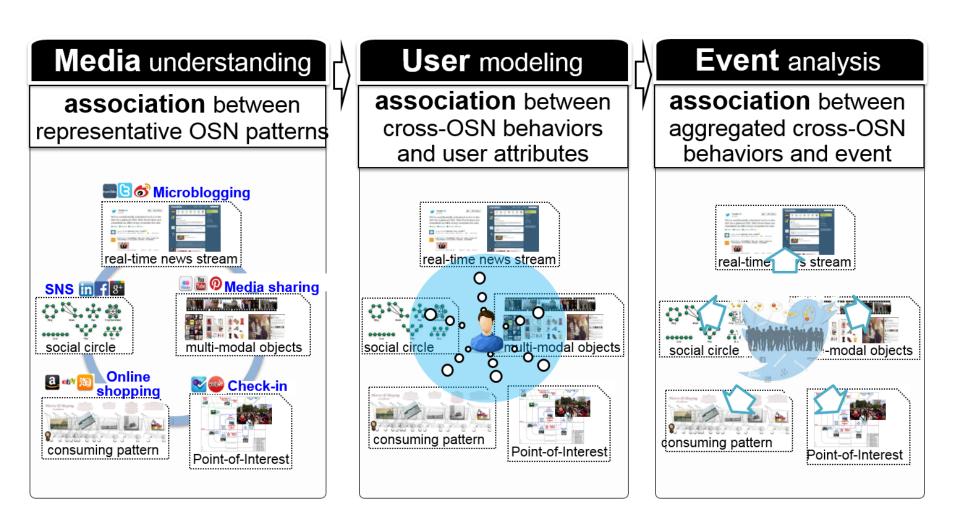
General Social Multimedia

Cross-OSN: an Instantiation

Cross-OSN (Online Social Networks)

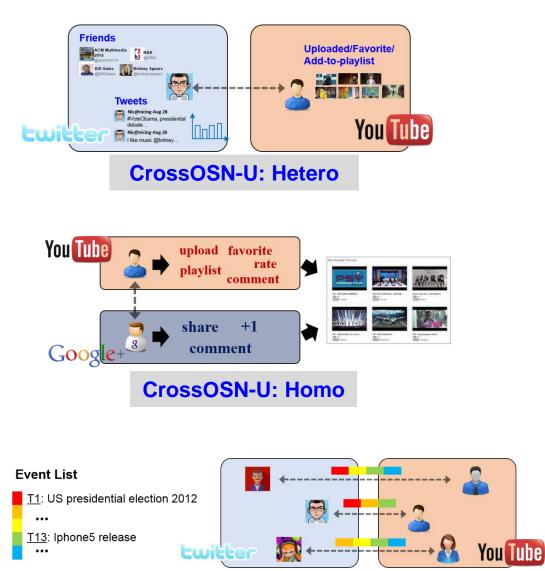


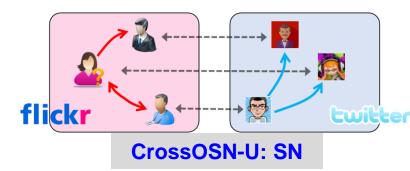
General Social Multimedia distributes among OSNs. Cross-OSN provides both dataset & application scenarios.



Jitao Sang, Changsheng Xu, Ramesh Jain. Social Multimedia Mining: from Special to General. *ISM 2016*, Invited Paper.

Cross-OSN Dataset (User-centric)





Thank you! Questions?