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ABSTRACT
RGB and thermal salient object detection (RGB‐T SOD) aims to accurately locate and segment salient objects in aligned visible
and thermal image pairs. However, existing methods often struggle to produce complete masks and sharp boundaries in
challenging scenarios due to insufficient exploration of complementary features from the dual modalities. In this paper, we
propose a novel mamba‐based fusion network for RGB‐T SOD task, named Mamba4SOD, which integrates the strengths of Swin
Transformer and Mamba to construct robust multi‐modal representations, effectively reducing pixel misclassification. Specif-
ically, we leverage Swin Transformer V2 to establish long‐range contextual dependencies and thoroughly analyse the impact of
features at various levels on detection performance. Additionally, we develop a novel Mamba‐based fusion module with linear
complexity, boosting multi‐modal enhancement and fusion. Experimental results on VT5000, VT1000 and VT821 datasets
demonstrate that our method outperforms the state‐of‐the‐art RGB‐T SOD methods.

1 | Introduction

Salient object detection (SOD) aims to locate and segment the
most salient object(s) in a natural image, which is widely used
in image segmentation [1], action recognition [2], image
retrieval [3], and object tracking [4]. Solely RGB‐based SOD
methods' [5–7] performance is often hindered in extreme sce-
narios, such as low light or adverse weather conditions, due to
the inherent limitations of visible sensors. Hence, thermal mo-
dality is used as an effective supplement to RGB modality in
SOD, because it captures radiation emitted by objects above
absolute zero, providing critical information that is invariant to
ambient lighting conditions. RGB and thermal (RGB‐T) SOD

has emerged as a promising solution, leveraging complementary
cues to boost detection robustness [8–10].

Traditional RGB‐T SOD methods [11, 12] primarily rely on
handcrafted features or heuristic priors to predict salient re-
gions. Their effectiveness in complex scenarios is limited by the
lack of rich semantic information and the well‐designed fusion
strategy. Recently, the success of Transformers in the visual
domain [13, 14] has been widely demonstrated, where
Transformer‐based backbones like PVT [15] and Swin Trans-
former [16] have been widely applied and achieved remarkable
results by capturing richer contextual information and facili-
tating multi‐scale feature integration.
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However, as illustrated in Figure 1, existing methods still face
several challenges, such as blurred boundaries and background
misclassification. Specifically, in the first two rows, both ADNet
[17] and WGOFNet [18], two state‐of‐the‐art RGB‐T SOD
methods, encounter challenges with blurred boundaries. ADNet
fails to segment the legs, while WGOFNet produces a blurry
mass. Specifically, in the second row, the blurred boundaries
between the car body and shadow lead to incorrect segmenta-
tion of the rear wheels and shadow. The last two rows show the
challenge of background misclassification. Both methods
mistakenly treat the pole as part of the target and fail to
distinguish the hollow parts of the headboard from the back-
ground. The underlying reason for these challenges lies in their
insufficient exploration of feature extraction and fusion mech-
anisms, particularly under low‐contrast conditions and sce-
narios with background clutter. These limitations become more
severe when one modality undergoes degradation. Moreover,
their progressive fusion of multi‐level features introduces
redundant information that ignores the hierarchical feature
selection, ultimately hindering overall performance.

To address these issues, we propose a mamba‐based fusion
network for RGB‐T SOD, named Mamba4SOD, which absorbs
the strengths of Swin Transformer V2 [19] and Mamba [20]
architectures to exploit the semantic complementary informa-
tion and suppress the modality bias. Specifically, Mamba4SOD
employs Swin Transformer V2 as the backbone to enhance
feature extraction, capturing both fine‐grained local details and
global contextual information, effectively mitigating issues like
blurred boundaries and enhancing overall detection perfor-
mance. Swin Transformer is a sophisticated network architec-
ture, and feature selection plays a crucial role in determining its
performance. Although previous works [9, 21] typically employ
the outputs from the four stages for multi‐level feature fusion,
they primarily focus on analysing shallow features while
neglecting the optimal combination of deeper features. This
indiscriminate utilisation of all stages often results in informa-
tion redundancy, leading to inefficiencies and increased
computational complexity. To overcome this issue, we perform
a comprehensive analysis of multi‐scale features across different
stages of the Swin Transformer. By identifying and selecting the
most informative stages, we develop an optimised feature se-
lection strategy, ensuring a balanced trade‐off between fine‐

grained details and semantic context, while simultaneously
reducing computational complexity.

To facilitate cross‐modal fusion, we develop a novel Mamba‐
based fusion module (MFM), leveraging the advantages of
Mamba in modelling long‐range dependencies to achieve
adaptive feature recalibration between RGB and thermal mo-
dalities. It dynamically adjusts the contribution of each modality
and mitigates issues arising from poor‐quality RGB images and
misleading thermal information. MFM combines complemen-
tary features from both modalities, preserving critical details
and enabling differentiation of visually similar but semantically
different objects. To the best of our knowledge, this is the first
work to explore and reveal the potential of the Mamba in the
RGB‐T SOD task.

Our main contributions can be summarised as follows:

� We propose a novel RGB‐T SOD network that integrates a
hybrid architecture of Swin Transformer and Mamba,
which produce accurate masks and outperforms state‐of‐
the‐art methods.

� We analyse the impact of multi‐scale features at different
stages of the Swin Transformer on detection performance,
optimising the feature selection process for ensuring a
balanced trade‐off between fine‐grained details and se-
mantic context.

� We propose a Mamba‐based fusion module to fuse RGB
and thermal modalities effectively for constructing robust
multi‐modal representations.

2 | Related Work

2.1 | RGB‐T SOD

RGB‐T SOD focuses on accurately locating and segmenting
common salient objects in aligned visible and thermal infrared
image pairs. It relies on the alignment and fusion of different
modalities to enhance object‐level saliency detection.

Existing RGB‐T SOD methods can be categorised into three
types: early traditional methods, CNN‐based methods and
Transformer‐based methods. Early methods mostly relied on the
manifold ranking algorithm. For instance, Wang et al. [12]
proposed a graph‐based multi‐task manifold ranking algorithm
and created the RGB‐T SOD benchmark VT821.

With the advance of deep learning, CNN‐based methods became
the mainstream for RGB‐T SOD. For example, Tu et al. [8]
advanced the field by combining multi‐level feature extraction
with attention mechanisms. They contributed two critical
datasets: VT1000 [22] and VT5000 [8], with VT5000 as a large
dataset designed to support deep learning‐based RGB‐T SOD
models. CSRNet [23] utilised a lightweight backbone and
context‐guided cross‐modality fusion modules to improve
feature integration and reduce computational costs. OSRNet
[24] utilised a lightweight decoder for efficient feature refine-
ment and real‐time performance, outperforming competitors
with real‐time speed on a single GPU.

FIGURE 1 | Visualization in complex scenes. Challenges such as
blurred boundaries and background classification are highlighted in
red and green, respectively. The results show that our method
effectively addresses both challenges.
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Recently, Transformer‐based methods have emerged as a
powerful alternative, addressing the limitations of CNNs by
leveraging self‐attention mechanisms for global context model-
ling. For instance, CAVER [25] employed a transformer‐based
model for multi‐modal SOD, allowing global alignment and a
novel attention mechanism. ACMANet [26] introduced an
asymmetric cross‐modal activation network that fuses diverse
features and uses self‐attention for precise salient object detec-
tion. SwinNet [21] integrated Swin Transformer with CNN to
extract hierarchical features, aligning and recalibrating them
across modalities to achieve sharp contours and well‐defined
boundaries. CWFNet [27] introduced a global illumination
learning module to emphasise reliable saliency cues. WGOFNet
[18] further optimised cross‐modal fusion by adaptively
weighting different modalities.

Unlike existing RGB‐T SOD methods, our method revisits and
optimises the feature selection in the Swin Transformer while
exploring the potential of Mamba to facilitate multi‐modal
feature fusion.

2.2 | Mamba

Mamba is an advanced state‐space model (SSM) that offers an
efficient approach to long‐range dependency modelling with
linear computational complexity. SSMs have emerged as a
promising alternative to Transformers in sequence modelling,
particularly in scenarios where computational efficiency is
critical. The structured state‐space sequence model [28]
improved computational efficiency by introducing a new
parameterisation to the SSM. Then, the simplified state space
layers for sequence modelling [29] extended the structured
state‐space sequence model by introducing multiple input

multiple output SSM and efficient parallel scanning. Mamba
[20] further advanced the SSM framework by introducing a
data‐dependent SSM layer, significantly enhancing sequence
modelling capabilities.

Building on these advancements, Vision Mamba [30] in-
corporates bidirectional selective state space models and posi-
tion embeddings to improve vision tasks. VMamba [31]
incorporated a Cross‐Scan Module, enabling 1D selective scan-
ning in 2D image space. Mamba‐based architectures have
demonstrated exceptional performance in various vision appli-
cations, such as image classification [30, 32], object detection
[33, 34] and image segmentation [35, 36]. Specifically, UMamba
[35] integrated CNN and SSM blocks to effectively capture both
local features and long‐range dependencies, improving perfor-
mance in various segmentation tasks. LocalMamba [37]
designed a novel local scanning strategy that preserves 2D de-
pendencies and dynamically selects optimal scan patterns,
enhancing modelling capability.

The ability to capture long‐range dependency modelling with
linear computational complexity makes Mamba an attractive
choice for multi‐modal fusion. Motivated by these advantages,
we explore the potential of Mamba to effectively integrate RGB‐
T features.

3 | Method

3.1 | Overview

The framework of the proposed Mamba4SOD is shown in
Figure 2. It consists of three main components: a symmetric two‐
stream Swin Transformer V2 [19] backbone, a Mamba‐based

FIGURE 2 | The framework of Mamba4SOD, which is divided into three components, that is, Swin Transformer V2 backbone, Mamba‐based
fusion module and label decoupling‐based decoder.
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fusion module and a label decoupling‐based decoder. Specif-
ically, the Swin Transformer V2 backbone extracts multi‐scale
features from selected stages to provide robust and efficient
feature representation. MFM effectively aligns and integrates the
RGB and thermal features, using adaptive weighting to facilitate
cross‐modal fusion. Finally, the label decoupling‐based decoder
predicts accurate saliency maps under the supervision of skel-
eton and contour labels, enhancing boundary localisation and
structural consistency.

3.2 | Swin Transformer V2 Backbone

Recently, numerous multi‐modal transformers have demon-
strated strong capabilities in multi‐modal feature fusion. For
example, the vision‐language transformer (VLT) for referring
segmentation [38] interprets natural language queries to iden-
tify specific objects in images, relying heavily on the interaction
between vision and language. However, in RGB‐T SOD, which
lacks language inputs, language‐driven mechanisms like VLT
are not directly applicable. Instead, the primary focus is on
robust feature fusion and noise suppression within visual
modalities.

Swin Transformer has proven to be a powerful backbone in
state‐of‐the‐art RGB‐T SOD methods [9, 21]. Hierarchical
features for the two modalities are extracted using two in-
dependent Swin Transformer V2 backbones, an enhanced
version of the original Swin Transformer, selected for the
robust feature extraction capabilities that efficiently capture
both local and global dependencies within multi‐modal data.
Furthermore, specific feature layers are selected based on
their effectiveness and are subsequently processed for fusion
and enhancement.

Previous works on Transformer‐based RGB‐T SOD have adop-
ted varying stage selection strategies. For instance, SwinNet [21]
uses features from stages 1–4, while MCNet [9] and WGOFNet
[18] select stages 2–5. These methods typically employ outputs
from four stages for multi‐level feature fusion without thor-
oughly considering the optimal combination of features,
resulting in potential information redundancy and unnecessary
computational costs. Moreover, studies [39] have shown that
deeper features generally contribute more to performance than
shallower ones in deep aggregation methods. Therefore, we
have retained the last stage.

To achieve efficient feature extraction, we perform a
comprehensive analysis of multi‐scale features across different
stages of the Swin Transformer. Based on the results, we
select features from three representative layers: one from the
shallow levels (stages 1 and 2) and two from the deeper levels
(stages 3–5). This carefully crafted selection strategy enables
the model to capture both fine‐grained details and high‐level
semantic information. In Mamba4SOD, we retain features
Fi

rgb = {Fi
rgb∣i = 2, 4, 5} and Fi

t = {Fi
t∣i = 2, 4, 5}, which are

resized to 64 channels through a 1 × 1 convolution. These
features are then fed into the MFM for effective multi‐modal
feature integration.

3.3 | Mamba‐Based Fusion Module

ALGORITHM 1 | Mamba process.

Input: token sequence Fl − 1 : (B, L, C)
Output: token sequence Fl : (B, L, C)
Fĺ − 1 : (B,L,C)← Norm(Fl − 1)

x : (B,L,E)← Linearx(Fĺ − 1)

z : (B,L,E)← Linearx(Fĺ − 1)

/* Space State Model (SSM) process
with different directions */
for o in {forward, backward} do

xó : (B,L,E)← SiLU(Conv1do(x))
Bo : (B,L,N)← LinearB

o (xó)

Co : (B,L,N)← LinearC
o (xó)

Δo : (B,L,E)← log(1 + exp(LinearΔo (xó) + ParameterΔ
o ))

Ao : (B,L,E,N)← Δo ⊗ ParameterAo
Bo : (B,L,E,N)← Δo ⊗ Bo

yo : (B,L,E)← SSM(Ao,Bo,Co)(xó)

end for

yʹ : (B,L,E)← (yforward + ybackward )⊙ SiLU(z)

Fl : (B,L,C)← LinearF(yʹ) + Fl − 1

Return Fl

Traditional fusion modules in the RGB‐T SOD task rely on
CNNs and the lack of long‐range dependencies leads to insuf-
ficient modality alignment and fusion performance. Mamba
leverages state‐space models to efficiently model long‐range
dependencies [20]. Unlike static fusion approaches, it dynami-
cally prioritises task‐relevant features while suppressing noise.
Furthermore, its directional scanning mechanism preserves
spatial coherence, facilitating robust multi‐modal or cross‐scale
alignment [40].

Inspired by this, we propose a Mamba‐based fusion module
designed to enhance and align features from the RGB and
thermal modalities. The fusion process is further optimised
with adaptive weights, which enable more effective and dy-
namic fusion. The detailed structure of MFM is shown in
Figure 3. First, the multi‐modal features undergo enhancement
through the Mamba. The Mamba architecture closely resembles

FIGURE 3 | The detailed design of the Mamba‐based fusion module.
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the Vim block of Vision Mamba [30] as illustrated in Algo-
rithm 1. The Mamba processes visual features in the form of
token sequences, similar to the patch‐based method employed
by Vision Transformers [41]. Given an input feature map Fi of
shape (B, C, H, W), where B is the batch size, C is channel
dimension, H and W are the spatial dimensions, it is reshaped
into (B, L, C), where L is the number of tokens, and C is the
channel dimension. These tokens are then fed into the Mamba
for enhanced feature alignment and fusion. By leveraging the
bidirectional state‐space modelling capability, the Mamba
effectively captures both local and long‐range dependencies
across modalities. The enhanced features are calculated as
follows:

F̃i
rgb =M(Fi

rgb), (1)

F̃i
t =M(Fi

t), (2)

where F̃i
rgb and F̃i

t represent the enhanced features of the RGB
and thermal modalities, respectively. Fi

rgb and Fi
t represent the

output feature maps. M refers to the Mamba.

To determine the weights assigned to each modality, MFM
concatenates the corresponding RGB and thermal features for
each stage output feature map of the symmetric two‐stream
Swin Transformer V2 backbone:

Fi
c = Concat(Fi

rgb,F
i
t), (3)

where Fi
c represents the concatenated feature, which is then fed

into a fully connected (FC) layer to generate modality‐specific
weights Wi:

Wi = FC(Fi
c). (4)

The softmax function is employed to determine the adaptive
weights for both RGB and thermal features:

Wi
rgb = softmax(Wi), (5)

Wi
t = 1 − Wi

rgb, (6)

where Wi
rgb and Wi

t denote the adaptive weights for the RGB
and thermal features, respectively. The enhanced modality
features F̃i

rgb and F̃i
t are multiplied by their respective modality

weights to fuse RGB and thermal features:

Ai
rgb = F̃i

rgb ×Wi
rgb, (7)

Ai
t = F̃i

t ×Wi
t, (8)

where Ai
rgb and Ai

t represent the attention maps of the MFM for
the RGB and thermal modalities based on the outputs from
backbone stage i, respectively.

3.4 | Label Decoupling‐Based Decoder

Inspired by Jiang et al. and Wei et al. [9, 42], our decoder
consists of two branches with the same structure but nonshared
parameters. Each branch processes RGB features Ai

rgb and
thermal image features Ai

t from MFM. Each branch is composed
of three residual blocks, where each block includes a 3 × 3
convolutional layer and a BatchNorm layer. The decoding
branches upsample the output of each residual block to match
the input size of the subsequent block using bilinear interpo-
lation. These branch‐specific outputs are then concatenated to
generate the final fused saliency map, which combines com-
plementary information from both modalities to achieve precise
and robust detection results.

Moreover, during the training stage, we employ skeleton label
supervision for the RGB branch to emphasise the structural
details of salient objects, leveraging the rich colour and texture
information inherent in RGB images. For the thermal branch,
we adopt contour label supervision, as thermal images are
particularly effective at capturing boundary information, espe-
cially under challenging conditions such as low light or adverse
weather. This label decoupling supervision strategy allows each
branch to capitalise on its respective strengths, enhancing the
effectiveness of cross‐modal feature extraction and fusion.

3.5 | Loss Function

Following [9, 42], the loss function consists of three parts to
measure the gap between the predicted results and the SOD
ground truths, which is calculated as follows:

L = Lrgb + Lthermal + Lfusion , (9)

Lrgb = LBCE + LSSIM , (10)

Lthermal = LBCE + LSSIM, (11)

Lfusion = LBCE + LSSIM + LIoU , (12)

where Lrgb, Lthermal and Lfusion represent the RGB loss, thermal
loss and fusion loss, respectively. LBCE represents the binary
cross‐entropy loss, LSSIM denotes the structural similarity index
measure and LIoU is the Intersection‐over‐Union loss.

4 | Experiments

4.1 | Experimental Setting

4.1.1 | Datasets

We evaluate our Mamba4SOD on three publicly available RGB‐T
SOD datasets: VT821, VT1000 and VT5000. We leverage 2500
pairs of aligned dual‐modality images from VT5000 as the training
set. The remaining 2500 pairs from VT5000, along with the 821 pairs
from VT821 and 1000 pairs from VT1000, are used as the test set.
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4.1.2 | Evaluation Metrics

We evaluate our method on seven widely‐used metrics [43–47],
precision‐recall (PR) curve, mean F‐measure (Favg), maximum
F‐measure (Fmax), the weighted F‐measure (Fω), mean absolute
error (MAE), E‐measure (Em) and S‐measure (Sm).

The PR curve is generated by binarizing the saliency map at
various probability thresholds (ranging from 0 to 1) and
comparing the resulting binary maps with the ground truth.

Fm computes the weighted harmonic mean of the threshold
precision and recall, defined as follows:

Fm =
(1 + β2

) ⋅ Precision ⋅ Recall
β2 ⋅ Precision + Recall

, (13)

where β2 is typically set to 0.3, giving equal weight to precision
and recall. The mean F‐measure Favg is the average F‐measure
computed over all thresholds. We also report the maximum
value of the F‐measure as Fmax. Furthermore, following [44], we
calculate the weighted F‐measure, denoted as Fω, to provide a
more comprehensive evaluation.

MAE measures the average absolute difference between the
predicted saliency map and the ground truth:

MAE =
1
N
∑
N

i=1
|Pi − Gi|, (14)

where N is the number of pixels, Pi is the predicted saliency
value, and Gi is the ground truth.

Em combines local pixel values with the overall image‐level
information:

Em =
1
N
∑
N

i=1

2 ⋅ Pi ⋅ Gi

P2
i + G2

i
. (15)

Sm evaluates the structural similarity between the predicted
saliency map and the ground truth:

Sm = α ⋅ So + (1 − α) ⋅ Sr , (16)

where So measures the object similarity, Sr measures the region
similarity and α is a weight parameter that balances these two
components.

4.1.3 | Implementation Details

We utilise dual NVIDIA RTX 4090 GPUs to train the proposed
Mamba4SOD method. We choose SwinV2‐B as the backbone,
pre‐trained on the ImageNet‐22K dataset. RGB and thermal
images are both resized to the shape of 384 × 384 pixels. During
the training phase, we set the batch size to 6 and apply various
data augmentation techniques, including horizontal flipping,
random cropping, and multi‐scale input strategies, following
best practices from previous works [9, 42]. The entire network is

trained end‐to‐end using stochastic gradient descent (SGD),
with a momentum of 0.9 and a weight decay of 0.0005. The
maximum learning rate is set to 0.005. The training process runs
for a maximum of 70 epochs to achieve optimal convergence.

4.2 | Quantitative Evaluation

To thoroughly validate the effectiveness of our method, we
conduct extensive comparisons with 13 state‐of‐the‐art RGB‐T
SOD methods, including ADF [8], CSRNet [23], OSRNET [24],
UMINet [48], TNet [49], MCFNet [50], CGFNet [51], CAVER
[25], ADNet [17], ACMANet [26], SwinNet [21], CMDBIF‐Net
[52] and WGOFNet [18].

Table 1 provides a comprehensive quantitative comparison be-
tween our Mamba4SOD and 13 comparison methods, validating
the superior performance of our method. In particular, we select
the recently proposed ADNet, which achieves the second‐best
results, for detailed comparison. On the VT5000 dataset, our
method improves Favg and Fω by 0.9% and 1.5%, respectively. Em

and Sm also show significant increases of 0.5% and 0.8%. On the
VT1000 dataset, our method still maintains noticeably stronger
performance, with Favg and Fω improving by 0.7% and 0.9%,
respectively. On the VT821 dataset, our results show a sub-
stantial improvement over ADNet, with Favg increasing by 0.9%,
Fω by 1.6%, and Em and Sm each increasing by 0.9% and 1.0%.
These performance gains can be attributed to the ability of MFM
to selectively emphasise informative regions while suppressing
noise and redundancy, particularly in cases where one modality
is degraded. The improvements in Em and Sm further validate
the effectiveness of Mamba4SOD in preserving structural details
and enhancing boundary accuracy.

Besides these key metrics, other metrics also exhibit significant
advantages or strong competitiveness. As illustrated in Figure 4,
the PR and F‐measure curves of the compared methods, indicate
that our proposed method surpasses other RGB‐T SOD methods
in terms of precision‐recall balance and overall F‐measure
performance. In summary, our proposed method consistently
achieves superior performance on VT5000, VT1000 and VT821
datasets.

4.3 | Qualitative Evaluation

We present a qualitative comparison with 13 state‐of‐the‐art
methods, as illustrated in Figure 5.

In Figure 5a–c, our method successfully eliminates interference
from saliency objects leveraging robust semantic feature
extraction, where other state‐of‐the‐art methods struggle to
differentiate the target from its surroundings. Figure 5d–f shows
the hollow region misclassification challenges. In Figure 5e,
despite noisy RGB inputs, our method precisely distinguishes
hollow regions from complex regions, demonstrating its
robustness against image degradation. In Figure 5g,h where
small targets are present, other models fail to accurately identify
salient objects and delineate their boundaries. Our method has
superior performance in these cases can be attributed to its
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ability to enhance fine‐grained features, enabling the detection
and segmentation of small but critical details. Figure 5i illus-
trates a scenario with blurred RGB images and thermal re-
flections. Although other methods are misled by these
distortions, our method successfully aligns RGB and thermal
data, achieving precise segmentation through cross‐modal
feature fusion. Figure 5j–m depicts scenarios involving blurred
boundaries, where other models suffer significant degradation.
Figure 5j involves multiple salient targets, Figure 5k features
small targets, Figure 5l shows similar foreground and back-
ground and Figure 5m involves shadows blending with vehicle
contours under lighting. In all these cases, our method suc-
cessfully learns complete structural information, sharpens
boundaries and maintains superior performance.

Overall, the superior performance of Mamba4SOD can be
attributed to the powerful feature fusion and enhancement ca-
pabilities of the Mamba, combined with the multi‐scale feature
extraction potential of Swin Transformer V2. This architecture
allows the model to achieve a well‐balanced integration of
global contextual information and fine‐grained local details. The
Mamba‐based fusion module, through adaptive weighting,
effectively facilitates cross‐modal fusion by dynamically
leveraging complementary features from both modalities. As a

result, Mamba4SOD has robust adaptability and outperforms
other methods across a diverse range of challenging scenarios.

4.4 | Ablation Analysis

4.4.1 | Effectiveness of Different Backbone Stages

To evaluate the impact of selecting different stages of the Swin
Transformer V2, we conduct a series of experiments under
computational constraints. We systematically explore various
combinations of high‐level features from different stages, and the
results for the VT5000, VT1000 and VT821 datasets are sum-
marised in Table 2, with the best results highlighted in red and the
second‐best in blue. The experimental results show that selecting
features from the second, fourth and fifth stages yields superior
performance. This can be attributed to the fact that RGB‐T SOD
tasks require a delicate balance between fine‐grained edge details
and high‐level semantic understanding. Features from the second
stage provide a richer representation of medium‐grained local
structures compared to the first stage, which primarily captures
low‐level details such as edges and textures. Although these low‐
level features are useful for detail recovery, they can introduce

FIGURE 4 | Quantitative comparisons of Mamba4SOD with state‐of‐the‐art RGB‐T SOD methods on VT5000, VT1000 and VT821. The first row
presents PR curves, while the second row shows F‐measure curves under different thresholds. Specifically, (a) shows the PR curve comparison on
VT5000, (b) shows the PR curve comparison on VT1000, (c) shows the PR curve comparison on VT821, (d) shows the F‐measure curve
comparison on VT5000, (e) shows the F‐measure curve comparison on VT1000, and (f) shows the F‐measure curve comparison on VT821.
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noise in complex scenarios, making the second‐stage features
more robust and effective. Similarly, the fourth stage offers better
high‐level semantic information than the third stage, enabling the
model to better understand the global context and relationships
within the scene. By retaining features from the second, fourth,
and fifth stages, the Mamba4SOD achieves an optimal balance
between local details and global semantic comprehension. The
combination not only enhances the model's ability to accurately
locate and segment salient objects but also reduces computational
costs.

4.4.2 | Effectiveness of Different Backbones

We compare the effectiveness of mainstream backbones,
including ResNet50, ResNet‐101 and Swin Transformer. The
quantitative comparison results are presented in the first three
rows of Table 3, showing the performance of our method with
different backbones on the VT5000 dataset. While ResNet50 and
ResNet‐101 are widely used in computer vision tasks, they
exhibit several limitations in the context of RGB‐T SOD. Due to
their inherently local convolutional operations, ResNet‐based
models struggle to capture long‐range dependencies, which
are essential for effectively integrating multi‐modal information
in complex scenes. Among the evaluated backbones, Swin
Transformer V2 shows a notable improvement in detection
performance, thanks to its global context and fine‐grained de-
tails extraction capabilities.

4.4.3 | Effectiveness of the Mamba‐Based Fusion
Module

To validate the effectiveness of MFM in integrating RGB and
thermal modalities, we conduct an ablation study of the archi-
tecture on VT5000 and VT821 datasets.

First, we train the proposed model using only the RGB modality
(R þ R) and only the thermal modality (T þ T) and then con-
ducted a quantitative comparison. The results are shown in the
fourth and fifth rows of Tables 3 and 4, which indicate the
significant advantages of dual‐modality fusion. On the VT5000
dataset, the dual‐modality model outperforms the single‐
modality models, achieving a 1.7% higher Favg score than the
RGB‐only model and a 5.7% improvement over the thermal‐only
model. The Fω values also increase by 1.7% and 5.9%, respec-
tively. VT821 is a more challenging dataset with many low‐
quality inputs, so the importance of modality fusion becomes
even more apparent. The dual‐modality model shows a larger
improvement, with Favg increasing by 2% over the RGB‐only
model and 8.4% over the thermal‐only model. Similarly, Fω
improves by 2.7% compared to RGB‐only and 9.3% compared to
thermal‐only. These results validate that dual‐modality training
effectively combines complementary features from both mo-
dalities, leading to enhanced performance.

To further evaluate the contribution of the MFM, we conduct
additional experiments by removing Mamba (w/o Mamba),

FIGURE 5 | Qualitative comparisons with 13 state‐of‐the‐art methods. We select 13 RGB‐T image pairs with diverse challenges to compare the
quality of the saliency maps. From the left to right columns are RGB image, thermal image, ground‐truth, and the results of 13 methods,
respectively. Each row (a–m) depicts a different scene in the dataset.
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excluding the adaptive weights (w/o weights) and replacing the
MFM with cross‐attention for feature fusion. The results are
presented in Tables 3 and 4, highlighting the performance im-
provements brought by the proposed components. While cross‐
attention is a widely used feature fusion mechanism, it does not
lead to significant improvements in RGB‐T SOD. These results

demonstrate that the Mamba with adaptive weights significantly
enhances performance by dynamically adjusting feature con-
tributions, thereby improving the model's ability to capture
relevant information while suppressing noises.

Moreover, the visual comparison results are shown in Figure 6,
which indicates that including the MFM enables better
distinction between the target and background, resulting in
more accurate boundary and complete objects.

TABLE 3 | Ablation study on backbone and architecture on VT5000.

Type Setting
VT5000

Favg↑ Fmax↑ Fω↑ MAE↓ Em↑ Sm↑
Backbone ResNet‐50 0.852 0.898 0.842 0.030 0.927 0.896

ResNet‐101 0.858 0.900 0.845 0.029 0.933 0.897

Swin‐B 0.895 0.926 0.890 0.021 0.955 0.924

Architecture RGB þ RGB 0.885 0.921 0.882 0.023 0.950 0.919

T þ T 0.845 0.888 0.840 0.029 0.934 0.893

W/o Mamba 0.894 0.931 0.896 0.020 0.956 0.928

W/o weights 0.899 0.931 0.897 0.020 0.957 0.927

Cross attention 0.883 0.927 0.886 0.021 0.952 0.925

Ours 0.902 0.932 0.899 0.019 0.958 0.930
Note: The best results are highlighted in red.

TABLE 4 | Ablation study on backbone and architecture on VT821.

Type Setting
VT821

Favg↑ Fmax↑ Fω↑ MAE↓ Em↑ Sm↑
Backbone ResNet‐50 0.848 0.904 0.843 0.028 0.920 0.898

ResNet‐101 0.837 0.899 0.833 0.029 0.917 0.897

Swin‐B 0.876 0.919 0.873 0.022 0.941 0.918

Architecture RGB þ RGB 0.866 0.903 0.857 0.026 0.929 0.909

T þ T 0.802 0.855 0.791 0.038 0.909 0.862

W/o Mamba 0.872 0.919 0.874 0.023 0.938 0.919

W/o weights 0.878 0.921 0.875 0.024 0.939 0.917

Cross attention 0.866 0.913 0.863 0.024 0.933 0.915

Ours 0.886 0.924 0.884 0.021 0.943 0.925
Note: The best results are highlighted in red.

FIGURE 6 | Qualitative comparisons with SwinNet [21] and w/o
MFM. Each row (a–e) depicts a different scene in the dataset.

FIGURE 7 | Loss convergence curves for different learning rates
(0.05, 0.005 and 0.0005).
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4.4.4 | Hyper‐Parameters Analysis

To further verify the effect of hyper‐parameters, we conduct
experiments comparing different learning rates (lr = 0.05, 0.005
and 0.0005), with the corresponding loss convergence curves
shown in Figure 7. The results indicate that convergence speed
increases with higher learning rates. Specifically, while lr = 0.05
leads to faster initial convergence, it causes less stable optimi-
sation and slightly lower final performance. In contrast,
lr = 0.005 offers a balanced trade‐off, significantly accelerating
convergence compared to lr = 0.0005, while maintaining sta-
bility and achieving the best final performance.

4.5 | Application to RGB‐D SOD Task

To evaluate the performance of Mamba4SOD on another multi‐
modal task, we train our method under the same experimental
conditions on the RGB‐D SOD DUT dataset [53], and test it on
several other RGB‐D SOD datasets, including NLPR [54],
NJU2K [55], STERE [56], DES [57] and SIP [58]. We compare
our method with several state‐of‐the‐art RGB‐D SOD methods,
including D3Net [58], ICNet [59], DCMF [60], DRLF [61], SSF
[62], UC‐Net [63], JL‐DCF [64], CoNet [65], DANet [66], EBFSP
[67], CDNet [68], HAINet [69], RD3D [70], DSA2F [71], MMNet
[72] and SwinNet [21]. The saliency maps for evaluation are
either provided by the published papers or generated by running
the corresponding source codes to ensure a fair comparison. As
shown in Table 5, our method achieves the best performance
across multiple datasets, confirming its ability to handle both
RGB‐T and RGB‐D modalities efficiently.

4.6 | Complexity Analysis

Table 6 shows the number of parameters and floating point
operations (FLOPs) of different methods. We select represen-
tative Fω for comparison due to its well‐balanced trade‐off be-
tween precision and recall. Compared with the most recent
method CGFNet [51], Ours_Res‐Net50 achieves higher quanti-
tative results with fewer parameters and FLOPs, demonstrating
the effectiveness of the MFM. While ResNet50 is a widely used
backbone, we chose not to rely solely on it due to its limited

capability to capture long‐range dependencies and multi‐scale
features efficiently.

By integrating the Mamba with the Transformer, Ours_SwinV2‐B
demonstrates a significant performance enhancement compared
to all other methods. In comparison to SwinNet [21], which
shares a similar backbone as our proposed method, we observe
an improvement of over 5% in Fω performance with fewer pa-
rameters and FLOPs, achieving state‐of‐the‐art results. Further-
more, Mamba4SOD also exhibits notable advantages over
WGOFNet [18] utilising PVT as the backbone and ADNet [17]
using asymmetric structure. Specifically, based on the different
scales of feature input, the parameter counts for the Mamba
corresponding to the three selected stages in our method are 0.68,
0.71 and 1.26 M, respectively. Additionally, the average running
time for the MFM is 23.74 ms under the same experimental
condition, and our method achieves a real‐time performance of
over 18 frames per second (FPS).

4.7 | Failure Cases and Analysis

While our comprehensive evaluation metrics demonstrate the
effectiveness of the proposed method, it still encounters chal-
lenges in certain complex scenarios. As shown in the first two
rows of Figure 8, when both visible light and thermal modalities
have interference, such as occlusions or similar foreground and
background, our method struggles to accurately localise and fully
segment the instances. Additionally, as shown in the last two rows
of Figure 8, in highly challenging scenes where RGB images are
significantly affected by noise and thermal images provide limited
information, our method fails to produce satisfactory segmenta-
tion results. Despite these limitations, Mamba4SOD still out-
performs existing comparison methods in these scenarios.

5 | Conclusion

In this paper, we proposed a novel RGB‐T SOD network named
Mamba4SOD, which integrates Swin Transformer V2 and
Mamba architectures. The proposed method investigates
optimal strategies for selecting and fusing different stages of
Swin Transformer V2, which reduces model complexity and
enhances performance. Furthermore, we proposed a Mamba‐
based fusion module to enhance the alignment and fusion ofTABLE 6 | Comparison of complexity and performance (weighted

F‐measure metrics on VT5000).

Backbone Algorithm params↓ FLOPs↓ Fω↑
CNN CAVER [25] 93.77 M 63.91 G 0.849

ACMANet [26] 124.39 M 51.76 G 0.823

CGFNet [51] 66.38 M 139.97 G 0.831

Ours_ResNet50 49.16 M 32.06 G 0.890

Transformer SwinNet [21] 199.18 M 124.14 G 0.846

WGOFNet [18] 61.76 M 48.47 G 0.873

ADNet [17] 93.32 M 56.68 G 0.884

Ours_SwinV2‐B 132.90 M 74.01 G 0.899
Note: The best and second best results are highlighted in red and blue,
respectively.

FIGURE 8 | Some failure cases of the proposed method. Each row
(a–d) depicts a different scene in the dataset.

13 of 16



multi‐modal features, significantly improving the integration of
complementary information. Experimental results demonstrate
that the proposed method outperforms existing state‐of‐the‐art
methods, particularly in scenarios involving blurred bound-
aries and background misclassification, accurately detecting
salient objects under challenging conditions.

Additionally, recognising that perfect alignment of RGB‐T data
may not always be feasible in real‐world scenarios, we plan to
explore methods for addressing misaligned or partially aligned
RGB‐T data to boost the model's performance under such
situations.
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