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ABSTRACT
The RGB-Depth (RGB-D) Video Object Segmentation (VOS) aims
to integrate the fine-grained texture information of RGB with
the spatial geometric clues of depth modality, boosting the per-
formance of segmentation. However, off-the-shelf RGB-D seg-
mentation methods fail to fully explore cross-modal information
and suffer from object drift during long-term prediction. In this
paper, we propose a novel RGB-D VOS method via multi-store
feature memory for robust segmentation. Specifically, we design
the hierarchical modality selection and fusion, which adaptively
combines features from both modalities. Additionally, we develop
a segmentation refinement module that effectively utilizes the
Segmentation Anything Model (SAM) to refine the segmenta-
tion mask, ensuring more reliable results as memory to guide
subsequent segmentation tasks. By leveraging spatio-temporal
embedding and modality embedding, mixed prompts and fused
images are fed into SAM to unleash its potential in RGB-D VOS.
Experimental results show that the proposed method achieves
state-of-the-art performance on the latest RGB-D VOS benchmark.
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1 INTRODUCTION
Video object segmentation (VOS) [43] aims to continuously seg-
ment specific object masks given in the first frame throughout the
video sequence, which has numerous applications in autonomous
driving [19, 23, 33], 3D reconstruction [20, 26, 44], surveillance [36,
45].

RGB VOS methods face various challenges in scenarios such
as extreme illumination, complex backgrounds, and occlusion. To
address these issues, RGB-Depth (RGB-D) VOS [46] introduces
depth modality which offers additional spatial geometric clues
for more robust segmentation. However, as shown in Figure 1(a),
RGB-D VOS methods which use template to guide fusion and
segmentation may encounter challenges in complex scenarios and
initial template may not guide the subsequent segmentation in
long-term videos, decreasing the robustness of segmentation.

Memory mechanism is used to address these issues in RGB
VOS [4, 5, 14, 21, 41, 42], which mine the spatio-temporal in-
formation and appearance features from previous segmentation
results to guide subsequent segmentation. Compared to traditional
approaches, memorymechanism effectively addresses the problem
of poor feature representation caused by continuous propagation
relying solely on adjacent frames. Among all memory-based meth-
ods, XMem [4] achieves satisfactory results by constructing a
multi-store memory network inspired by Atkinson-Shiffrin mem-
ory model [9]. It consists of sensory memory, working memory
and long-term memory that significantly improves the robustness
of segmentation through effective insertion of memory content.
XMem effectively inserts memory content, significantly improving
the robustness of segmentation.

Inspired by XMem, we propose an enhanced multi-store mem-
ory network for RGB-D VOS. However, there are two challenges
that need to be addressed: (1) How to adaptively fuse complemen-
tary information from RGB-D modalities? (2) How to estimate the
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Figure 1: Comparison of the framework between different
RGB-D VOS methods. (a) RGB-D VOS methods without
memory, which use template to guide fusion and segmenta-
tion. (b) The proposed method which use memory to guide
fusion and segmentation.

quality and reliability of inserted segmentation results as guidance
for accurate subsequent segmentation?

As shown in Figure 1(b), the hierarchical modality selection and
fusion (HMSF) is proposed to fuse RGB-D features under the guide
of memory. HMSF is capable of extracting the complementary
features from both modalities and selectively fusing multi-modal
features, making it suitable for RGB-D feature fusion during seg-
mentation and content encoding in a multi-store memory network.
To enhance the reliability of segmentation results, we attempt to
leverage the powerful segmentation capabilities of the Segment
Anything Model (SAM) [18] for refinement. To the best of our
knowledge, we are the first to introduce SAM into the RGB-D VOS.
Specifically, we take the fused image and the mixed prompt as the
input of SAM. This paper focuses on generating pixel-wise RGB-
D fused images and effective prompts to reduce the false positive
pixels or regions, thereby guiding more accurate segmentation.
To this end, we propose spatio-temporal embedding and modality
embedding to further improve performance. The spatio-temporal
embedding integrates historical information from the entire video
segmentation process to provide prompts for SAM, while modality
embedding effectively combines RGB-D images through a pixel-
wise fusion strategy. The fused weights are calculated by the
quality of modality from HMSF and the significance of the region
to facilitate the segmentation performance and refine the mem-
ory content. Experimental results demonstrate that the proposed
method achieves the best results on the latest RGB-D VOS dataset.

Themain contributions of this paper are summarized as follows:

• We propose a novel RGB-D VOS method based on multi-
store feature memory, enabling robust segmentation of
RGB-D sequences in diverse and complex scenarios.

• We present the HMSF to effectively fuse hierarchical and
cross-modality features. Also, it can facilitate the encoding
of memory.

• Wedevelop a segmentation refinementmodule that incorpo-
rates spatio-temporal embedding and modality embedding
with SAM, significantly enhancing the reliability of segmen-
tation results.

2 RELATEDWORK
2.1 Semi-supervised VOS
Video object segmentation encompasses unsupervised VOS [8, 32],
semi-supervised VOS [4, 21, 38, 42], and interactive VOS [3, 24].
Semi-supervised VOS annotates the object masks in the first frame
to guide the segmentation of the rest frames. The semi-supervised
VOS methods can be categorized into motion-aware VOS methods
and detection-aware VOS methods.

Motion-aware VOS methods utilize optical flow or CNN-based
learning for mask refinement. Optical flow-based methods employ
motion cues to estimate pixel changes over time [6, 17], while CNN-
based learning methods refine the object mask frame-to-frame by
leveraging temporal information [28] or combining RNNs [37]
with current mask predictions. Although these methods show
promising performance, they still lack robustness when dealing
with challenging attributes, i.e., occlusion or fast motion in long-
term videos.

Detection-aware VOSmethods primarily involve learning an ap-
pearance model for pixel-wise object detection and segmentation.
For instance, Caelles et al. [2] employ fully convolutional neural
networks on static images to segment objects by fine-tuning the
first frame of the video sequence. Some other methods [15, 29]
employ pixel-matching techniques to segment objects based on
feature matching with a template. Yang et al. [41, 42] embed
multiple objects into the same embedding space, then uniformly
and simultaneously propagate all object embedding. Xmem [4],
inspired by human memory mechanisms, offers an innovative
propagation method, avoiding the out-of-memory crash. These
methods perform well in handling occlusion or fast motion sce-
narios. However, distinguishing cross-temporal similar objects
remains challenging.

In RGB-D VOS, Zhao et al. [46] pioneer the emerging area
by introducing the first benchmark known as ARKitTrack, which
opens up a new frontier. However, there is room for decreasing the
complexity of the fusion model and improving its performance in
long-term segmentation. We propose a multi-store feature mem-
ory for robust RGB-D segmentation.

2.2 RGB-D Video Object Tracking
As RGB-D VOS is a relatively new domain with limited prior work,
it is beneficial to provide an introduction to the related field of RGB-
D tracking [27, 36, 40, 49, 50], which shares a similar processing
scheme.

RGB-D tracking is a type of multi-modality object tracking[10,
12, 13, 34, 35]. Song et al. [30] establish the first RGB-D tracking
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Figure 2: The framework of the proposed method, consists of RGB-D fusion and mask generation, segmentation refinement
and multi-store memory management.

dataset, pioneering the task of RGB-D tracking. Zhong et al. [48]
introduce a method for extracting key points from dense depth
maps for use in RGB-D tracking. Bibi et al.[1] employ appearance
models and 3D spatial motion models to estimate object positions.
Kart et al. [16] integrate discriminative correlation filters (DCF) to
propose a general framework for RGB-D tracking. Qian et al. [27]
address the occlusion challenge by embedding depth into deep
features and training discriminators. Zhao et al. [47] employ depth
to generate object masks and accurately cut out prediction results.
Yan et al. [39] explore pseudo-color images derived from depth
data and investigate the integration with RGB images. With the ad-
vancement of transformer, Zhu et al. [50] incorporate transformers
to fuse multi-modal features. Moreover, some researchers [40, 49]
apply prompt learning to adapt existing RGB trackers for RGB-D
tracking.

3 METHODOLOGY
3.1 Network Architecture
As illustrated in Figure 2, the proposed method comprises three
modules: RGB-D fusion and mask generation module, segmen-
tation refinement module, and multi-store memory management
module. Specifically, the RGB-D fusion and mask generation mod-
ule aims to fuse RGB-D dual-modality features and integrate them
with multi-store feature memory to produce segmentation results.
The segmentation refinementmodule flexibly utilizes the SAM [18]
to refine segmentation results and ensure more accurate results
as memory to guide subsequent segmentation. The multi-store
memory management module encodes and stores both RGB-D
images and segmentation results as feature memory.

The proposed method utilizes dual-modality image sequences
as input, which are initially processed by the HMSF for feature
extraction and fusion. The output from HMFS is then combined
with the featurememory in themulti-storememory bank, followed
by decoding to obtain accurate segmentation results. To further
improve the segmentation performance and guide the subsequent
segmentation, we incorporate SAM [18] to refine segmentation
masks. In particular, we estimate the reliability of segmentation
masks and generate mixed prompts for SAM to maintain the
consistency of the given prompts via spatio-temporal embedding.
Next, we fuse the RGB-D images using a pixel-wise strategy
by using modality embedding. Subsequently, the refined masks
are encoded via the HMSF for memory and inserted into the
multi-store memory bank that captures historical information of
segmentations, thus preventing error accumulation in long-term
videos.

3.2 RGB-D Fusion and Mask Generation
To extract and integrate hierarchical complementary features from
different modalities, we propose hierarchical modality selection
and fusion. As shown in Figure 3(a), the HMSF firstly extracts
features of different modalities using ResNet50 [11]. Then it adap-
tively fuses dual-modality hierarchical features across layer 1 to
layer 3 of ResNet50 via modality selection and fusion, which com-
bines the shallow features and deep features to enhance the multi-
modality feature representation.The fused hierarchical features 𝐹4,
𝐹8, and 𝐹16 are utilized for segmentation.

The details of modality selection and fusion are shown in
Figure 4. Initially, the RGB and depth features from the current
layer undergo global average pooling to extract global features.
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Figure 3: The detail of hierarchical modality selection
and fusion.(a) Hierarchical modality selection and fusion
used in RGB-D fusion and mask generation module. (b)
Hierarchical modality selection and fusion for memory
used in multi-store memory management module.

These global features are then distributed through the RGB and
depth flows to generate channel-level modality weights, which are
crucial for selectively fusing dual-modality features and guiding
pixel-wise fusion within the segmentation refinement module.
Next, the modality weights are multiplied by the corresponding
feature channels to obtain discriminative features. Deep features
are derived by summing the above discriminative features, which
is formulated as follows:

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐹𝐶 (𝐺𝐴𝑃 (𝐹𝑅𝐺𝐵 ⊕ 𝐹𝐷 )) , (1)

𝑊̂𝑖 = 𝜎
(
𝐹𝐶𝑖

(
𝐹𝑔𝑙𝑜𝑏𝑎𝑙

))
, 𝑖 ∈ {𝑅𝐺𝐵, 𝐷}, (2)

𝐹𝑖 = 𝐹𝑖 ⊗𝑊𝑖 , 𝑖 ∈ {𝑅𝐺𝐵, 𝐷}, (3)

𝐹𝑑𝑒𝑒𝑝 = 𝐹𝑅𝐺𝐵 ⊕ 𝐹𝐷 , (4)

where FC(·) is the linear layer; GAP(·) represents global average
pooling; 𝐹𝑅𝐺𝐵 , 𝐹𝐷 ,𝑊𝑅𝐺𝐵 ,𝑊𝐷 represent RGB features, depth fea-
tures, RGB weights, depth weight respectively; ⊕ denotes element-
wise addition and ⊗ denotes the element-wise multiplication oper-
ation.

Subsequently, both shallow features and deep features are fused
separately using the same way. Modality selection and fusion aim
at fusing hierarchical features from multi-scale layers to expand
the receptive field and thus enhance the representational power of
the fused features.

Once obtaining the hierarchical features, we retrieve the best-
matched features from the memory bank and merge themwith the
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Figure 4: The details of modality selection and fusion.
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hierarchical features for decoding to generate segmentationmasks.
Specifically, the features stored in the memory are concatenated
with 𝐹16. Subsequently, these hierarchical features are decoded
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into a segmentation mask using a series of upsampling operations.
The decoder and memory retrieval operations follow XMem [4].

3.3 Segmentation Refinement
To improve the reliability of segmentation results and guide sub-
sequent segmentation, we propose a segmentation refinement
module that flexibly leverages SAM. This module incorporates
spatio-temporal embedding to estimate the quality of segmenta-
tion, generating mixed prompts for guiding SAM. Moreover, it
employsmodality embedding to evaluate the reliability of different
modalities, thereby generating pixel-wise fused RGB-D images
that are enriched with cross-modal information for SAM.

Spatio-Temporal Embedding. The spatio-temporal embed-
ding leverages historical segmentation results to estimate the
reliability of current segmentation and generate mixed prompts,
which are composed of box prompt and point prompt. While the
box-only prompt can designate the object area, it often struggles to
accurately specify the object in complex backgrounds. On the other
hand, the point-only prompt cannot precisely predict the scale of
objects. To bridge this gap between these two types of prompts, the
mixed prompt capitalizes on their respective strengths, unleashing
SAM’s potential for accurate segmentation.

As shown in Figure 5(a), spatio-temporal embedding considers
historical spatial trends of the objects, which involves motion
trends and area estimation. Deviation from the expected motion
trend in the current segmentation result indicates a potential error
in object positioning. In such cases, the cluster center from the
previous mask memory is used to generate the point prompt.
Conversely, if the current position is deemed highly reliable, the
cluster center of the current mask serves as the point prompt.
Specifically, we define a threshold for significant object shift
denoted as 𝑀 . When the deviation between the current position
and the historical trend exceeds 𝑀 , it implies a potential error
prompting the generation of point prompts using stored memory
content. Conversely, if the deviation falls within 𝑀 , the point
prompt is generated using the cluster center of the current po-
sition. Additionally, area estimation is performed, if there is a
considerable disparity in mask area between the segmentation
mask and mask memory, it may indicate unreliable segmentation
and we generate the box prompt using the outer enclosing box of
mask memory. Otherwise, the outer enclosing box of the current
segmentation mask is used as box prompt. The mixed prompt
consisting of both box and point information is then fed into SAM
to provide guidance for modality embedding and generate reliable
dual-modality images.

Modality Embedding. The modality embedding explores the
collaborative and heterogeneous nature of different modalities, in-
tegrating RGB-D complementary information and providing SAM
with pixel-wise fused RGB-D images. In complex scenarios, the
fused weights learned from the training set may yield suboptimal
fused results. Therefore, we enhance the reliability of the fused
weights by combining regional significance assessment with the
modality weights of HMSF.

As illustrated in Figure 5(b), we first crop the dual-modality
images to an appropriate size based on the box prompt from the
spatio-temporal embedding to extract the region of interest and

minimize excessive background interference. Subsequently, we
estimate the significance of the depth image within the cropped
region. If the significance rate is low, incorporating depth modality
might introduce segmentation errors. Conversely, if the signifi-
cance rate is high, we can employ the modality weights obtained
from the HMSF for pixel-wise fusion. The regional significance
assessment involves calculating the entropy of color distribution
in a pseudo-color transformed version of the depth image, which
can be calculated as follows:

𝐸 = −
255∑
𝑖=0

255∑
𝑗=0

255∑
𝑘=0

𝐻 [𝑖, 𝑗, 𝑘] · log2 (𝐻 [𝑖, 𝑗, 𝑘]), (5)

where 𝐸 represents the value of entropy, with a higher value indi-
cating a higher significance rate; 𝐻 [𝑖, 𝑗, 𝑘] denotes the proportion
of pixels in the color space with red, green, and blue channel values
of 𝑖 , 𝑗 , and 𝑘 , respectively. After estimating the significance of the
region, we determine whether to fuse depth information. Subse-
quently, using the modality weights obtained from the HMSF, we
perform a weighted element-wise addition of the dual-modality
images. This aims to meet the input requirement of the SAMwhile
also maintaining effective fusion of the modalities [31]. Ultimately,
this process provides the SAMwith a fused image for segmentation
refinement.

3.4 Multi-Store Memory Management
Memory mechanism in VOS facilitates the extraction of appear-
ance features and establishment of spatio-temporal connections
from previous segmentation results. To enhance the robustness of
RGB-D VOS, we adopt the multi-store memory model introduced
by XMem [4], modifying it to suit the requirements of dual-
modalities.

The multi-store memory model, inspired by Atkinson-Shiffrin
memory model [9], divides memory into sensory memory, work-
ing memory, and long-term memory.The network encodes images
and segment results at distinct frequencies and stores them in each
feature memory. During retrieval, a similarity matrix is computed
based on the current frame’s features to match relevant content
from the multi-store memory.

To enhance the reliability of segmentation masks as memory by
encoding complementary features of RGB-D images, we propose
the HMSF for memory as the memory encoder. The proposed
method utilizes modality selection and fusion to encode the refined
masks from the segmentation refinement module along with RGB-
D images as the memory content. As shown in Figure 3(b), we
employ the ResNet18 [11] as the backbone for encoder.The refined
segmentation results are concatenated with RGB and depth images
respectively, and the modality selection and fusion are used to
extract features from layer 2 and layer 3. These fused features are
stored in memory according to the following formula:

𝑀 = 𝐹𝑢 ((𝑅𝐺𝐵2 ⊕ 𝐷2), 𝑅𝐺𝐵3, 𝐷3), (6)
where 𝐹𝑢 (·) represents modality selection and fusion; 𝑀 repre-
sents the memory features; 𝑅𝐺𝐵2, 𝐷2, 𝑅𝐺𝐵3, and 𝐷3 denote the
second and third layer features of RGB and depth, respectively.
This way allows the multi-store memory to adapt to the multi-
modal memory content of RGB-D, effectively preventing errors in
memory content that could mislead subsequent segmentation.
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3.5 Loss Function
Following XMem [4], we employ bootstrapped cross-entropy loss
and dice loss as loss functions [25].The bootstrapped cross-entropy
loss can be calculated as:

L𝑏𝑐𝑒 =
1
|𝑆𝑙 |

∑
𝑚𝑙

𝑖 ,𝑔𝑖 ∈𝑆𝑙

{
𝐹
(
𝑚𝑙
𝑖

)
< 𝜂

}
C (𝑔𝑖 , 𝐹 (𝑚𝑖 )) , (7)

where 𝐹 (·) is the output probability for a labeled example𝑚𝑖 ; 𝑔𝑖 is
ground truth, and 𝐶 (·) represents the cross-entropy loss. The dice
loss can be calculated as:

L𝑑 = 1 − 2|𝑚 ∩ 𝑔|
|𝑚 | + |𝑔| , (8)

where 𝑚 and 𝑔 represent predict mask and ground truth mask,
respectively. The total loss is calculated as the sum of the boot-
strapped cross-entropy loss and the dice loss:

L𝑡𝑜𝑡𝑎𝑙 = L𝑏𝑐𝑒 + L𝑑 . (9)

4 EXPERIMENTS
4.1 Datasets and and Metrics
TheARKitTrack [46] is the most recent RGB-D VOS dataset, which
is utilized for comparative experiments against state-of-the-art
methods. This dataset consists of more than 200 pairs of RGB-
D sequences of 1920 × 1440 resolution which collected in real-
world scenarios. Each video sequence contains synchronized and
aligned RGB frames and depth maps. The sequences encompass
various challenging scenarios such as similar objects, occlusions,
and extreme illumination.

We use JM , FM , and J&F measure [43] as evaluation
metrics used in these experiments. Specifically,JM denotes region
similarity and is calculated as the intersection over union (IoU)
between the predicted object segmentation mask and the ground
truth. It can be calculated using the following formula:

JM =
𝑀 ∩𝐺

𝑀 ∪𝐺
, (10)

where 𝑀 is the predicted mask, while 𝐺 denotes the ground truth.
FM stands for contour accuracy which is calculated based on the
precision and recall of the contour. It can be calculated as follows:

FM =
2𝑃𝑐𝑅𝑐
𝑃𝑐 + 𝑅𝑐

, (11)

where 𝑃𝑐 represents precision and 𝑅𝑐 denotes recall. The metric
J&F is the average of JM and FM :

J&F =
JM + FM

2
. (12)

4.2 Implementation Details
The proposed model is trained on a server equipped with a 5.2GHz
CPU and four 3090 GPUs with a total of 96GB of memory. During
training, we employ the AdamW optimizer [22] with a learning
rate set to 1𝑒−5 and a batch size of 8. The model undergoes a total
of 120K iterations on the training set. All other training parameters
are consistent with the baseline [4]. We utilize the ViT-H version
weights of SAM [18]. Furthermore, the threshold for regional
significance 𝐸 is set to 6, while the threshold for significant object
shift𝑀 is set to 500 pixels. The parameter amount of the proposed

Table 1: Comparison results of the proposedmethod against
the competing methods on ARKitTrack test set. The upper
section lists RGB methods, and the lower section includes
RGB-D methods. The best results are highlighted in bold.

Methods Year JM ↑ FM ↑ J&F ↑
STCN [5] 2021 0.489 0.560 0.525
AOT [41] 2021 0.555 0.627 0.582
RPCM [38] 2022 0.492 0.527 0.509
QDMN [21] 2022 0.276 0.337 0.306
XMem [4] 2022 0.541 0.565 0.553

STCN_RGBD [5] 2021 0.498 0.574 0.537
XMem_RGBD [4] 2022 0.617 0.680 0.649

SAMTrack_RGBD [7] 2023 0.445 0.463 0.454
ARKitTrack [46] 2023 0.625 0.698 0.662

Ours - 0.673 0.723 0.698

method without SAM is 64.9M, when the input images are paired
1920×1440 RGB-D dual-modal images, the inference efficiency is
about 1.5 FPS.

4.3 Comparison with the State-of-the-Art
To validate the effectiveness of the proposed method, we conduct
comparative experiments with seven state-of-the-art methods, in-
cluding STCN [5], AOT [41], RPCM [38], QDMN [21], XMem [4],
SAMTrack [7], and ARKitTrack [46]. In addition, wemodify Xmem
and SAMTrack by adding a depth branch, which is then fused with
the RGB branch to form Xmem_RGBD and SAMTrack_RGBD. To
ensure fairness in the experimental evaluation, all methods are
fine-tuned on the training dataset provided by ARKitTrack [46].

The comparison results are presented in Table 1, illustrating that
our method achieves the best performance in all three metrics. In
comparison to the state-of-the-art method ARKitTrack [46], our
method exhibits improvements of 4.8%, 2.5%, and 3.6% in JM , FM ,
and J&F , respectively. These advancements can be primarily
attributed to the enhanced multi-store memory, which effectively
extracts appearance features and establishes historical connections
of segmentation results, thereby enhancing segmentation relia-
bility significantly. When compared to baseline, XMem [4], the
performance of the proposed method has even more substantial
improvements with increases of 13.7%, 6.8%, and 14.5% in the
three metrics, respectively.The proposed segmentation refinement
module is primarily responsible for this improvement, as it effec-
tively corrects segmentation errors and prevents their inclusion in
the multi-store memory, thereby avoiding subsequent misleading
segmentation.

Compared to SAMTrack, which also utilizes the SAM for seg-
mentation guidance, ourmethod shows notable improvements due
to the incorporation of spatio-temporal embedding and modality
embedding. The spatio-temporal embedding generates accurately
mixed prompts, while the modality embedding fuses informa-
tive RGB-D images with a pixel-wise strategy. In contrast, SAM-
Track only performs full-image segmentation on a single modal-
ity, which limits its efficient utilization of SAM. Moreover, the
HMSF extracts and fuses the complementary features from each
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Table 2: Ablation study on different components. HMSF
represents hierarchical modality selection and fusion, STE
and ME denote spatio-temporal embedding and modality
embedding respectively, The best results are highlighted in
bold.

HMSF STE ME JM ↑ FM ↑ J&F ↑
0.617 0.680 0.649

✓ 0.637 0.691 0.664
✓ ✓ 0.651 0.702 0.677
✓ ✓ ✓ 0.673 0.723 0.698

Table 3: Comparison of different thresholds, 𝐸 represents
the threshold for regional significance and 𝑀 is the
threshold for significant object shift, all results in the table
are J&F . The best result is highlighted in bold.

E=4 E=6 E=8
M=300 0.673 0.687 0.654
M=500 0.681 0.698 0.666
M=700 0.666 0.767 0.659

modality, thus improving the representation ability of features,
and further enhancing the performance of RGB-D segmentation.
The comparison experiments fully demonstrate the effectivenes of
the proposed method.

4.4 Ablation Study
Components Analysis. To further validate the effectiveness of
each component, we conduct ablation experiments with four ver-
sions of the proposed method.

As shown in Table 2, in the first row, we add depth and RGB
directly in the RGB-D fusion and mask generation module, as
well as the multi-store memory management module. The corre-
sponding three metrics are 0.617, 0.680, and 0.649, respectively. For
the second row, instead of direct addition in RGB-D fusion mask
generation and multi-store memory management module, we in-
troduce HMSF for improved performance. The three metrics show
respective increases of 2%, 1.1%, and 1.5%. These results indicate
that our HMSF effectively integrates dual-modality information
and encodes the memory content, increasing the robustness of
segmentation in complex scenarios. In the third row, we introduce
a spatio-temporal embedding to generate mixed prompts, only
RGB modality is fed into SAM. The metrics show improvements
of 1.5%, 1.1%, and 1.3%, respectively. This demonstrates that spatio-
temporal embedding can enhance SAM’s segmentation quality by
providing reliable mixed prompts enriched with complementary
dual-modalities information. The final row involves the modality
embedding, which utilizes RGB-D dual-modalities for segmenta-
tion refinement. The final scores reach 0.673, 0.723, and 0.698, re-
spectively.These results demonstrate that the modality embedding
employs a pixel-wise fusion strategy based on the fused weights
learned from HMSF and region significance. Thus, this process
effectively provides informative segmentation images for SAM,

enriched with complementary dual-modalities information. The
component analysis indicates the effectiveness of each component.

Parameter Analysis. In this section, we conduct an analy-
sis of the parameters set for the proposed method, focusing on
the thresholds set for spatio-temporal embedding and modality
embedding in segmentation refinement. These thresholds include
the threshold for significant object shift 𝑀 and the threshold for
regional significance 𝐸.

We conduct a total of nine sets of experiments, varying the value
of 𝑀 at 300 pixels, 500 pixels, and 700 pixels, and 𝐸 at 4, 6, and 8,
respectively. As indicated in Table 3, the best results are achieved
when 𝑀 is set to 500 pixels and 𝐸 to 6. The parameter analysis
suggests that the significant object shift 𝑀 is primarily used to
estimate whether an object is segmented incorrectly based on its
spatial change, hence determining whether to generate prompts
from memory masks or current masks. If this value is set too
low, normal object movements may be misclassified as significant
shifts, leading to erroneous generation of prompts from historical
information and missing the actual position of objects which can
cause segmentation errors. Conversely, if the threshold is set
too high, segmentation errors may be ignored thereby missing
opportunities for correction.

The regional significance threshold 𝐸 estimates the amount
of information contained in the depth modality through entropy
measurement, it determines whether fusion with RGB is necessary.
If this value is set too low, it may lead to the integration of
potentially misleading depth information with low distinctive-
ness into the RGB image. On the other hand, setting it too high
may disregard informative depth images containing discriminative
features. The parameter analysis fully proves the rationality of
parameter settings.

Qualitative Analysis. To demonstrate the advantages of the
proposed method, we conduct a qualitative analysis, as depicted in
Figure 6. Given the lack of test results provided by most existing
methods, we primarily employed results visualization to validate
the efficacy of the segmentation refinement module.

In the first sequence, the objects are specified as two books
with confusing appearances and similar depths in the depth modal-
ity. More importantly, their depth closely resembled that of the
background which posed a significant challenge for segmentation.
Without segmentation refinement, our method initially segments
correctly but gradually confuses these objects due to unreliable
segmentation results being stored in memory leading to error
accumulation and eventual complete confusion between them.
However, with segmentation refinement utilizing spatio-temporal
embedding and mixed prompt information generation through
SAM upon identifying any errors during the segmentation process
followed by pixel-wise fusion usingmodality embedding generates
accurate segmentations which are then stored in memory for
guiding subsequent tasks.

In the second sequence, the objects are specified as a person and
her bag in the frame. The segmentation process is complicated by
challenges such as the person’s movements, which can occlude the
backpack. Additionally, the presence of multiple similar-looking
persons in the frame can lead to confusion with the segmentation
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Figure 6:Qualitative comparison of the proposed method in handling different challenging scenarios, the first row shows the
RGB images, the second row presents the depth images, the third row depicts the segmentation results without segmentation
refinement, the fourth row illustrates the results of the proposed method, and the final row shows the ground truth.

object. The method without segmentation refinement might con-
fuse one person for another. Our method leverages the segmenta-
tion refinement module to reliably segmentation and identify each
object.

The qualitative analysis visually demonstrates the effectiveness
of our method in complex scenarios.

5 CONCLUSION
In this paper, we proposed a novel RGB-D VOS method based on
an enhanced multi-store memory. Specifically, we proposed a seg-
mentation refinement module to improve the reliability of segmen-
tation results by incorporating spatio-temporal embedding and
modality embedding which provide mixed prompts and pixel-wise
fused images for SAM. Additionally, we presented the HMSF for
the selective fusion of hierarchical features across both modalities,
thereby enhancing themodality interaction andmemory encoding.
The proposed method achieved state-of-the-art performance on
the latest RGB-D VOS dataset ARKitTrack.
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