The 14th International Conference on Multimedia Retrieval

Semantic-guided RGB-Thermal Crowd Counting with Segment Anything Model

Yaqun Fang, Yi Shi, Jia Bei*, Tongwei Ren State Key Laboratory for Novel Software Technology, Nanjing University

Introduction & Related Works

Method & Experiment

4 Limitation & Conclusion

Homepage:

https://magus.ink

Author Information

Yaqun Fang fangyq@smail.nju.edu.cn

Yi Shi yishi@smail.nju.edu.cn

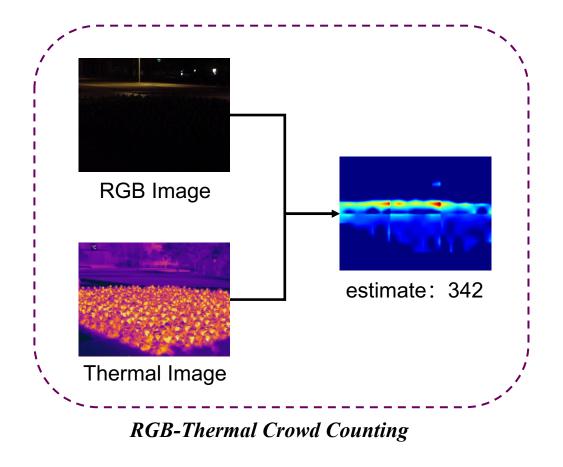
Bei Jia beijia@nju.edu.cn

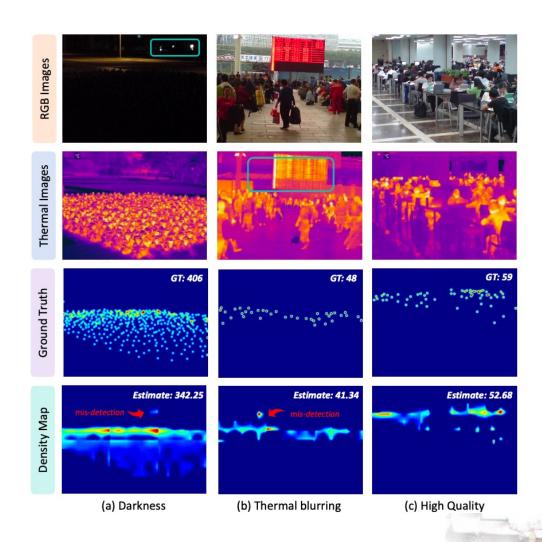
Tongwei Ren rentw@nju.edu.cn

June 10–14, 2024 Dusit Thani Laguna Phuket, Thailand

Introduction & Related Works

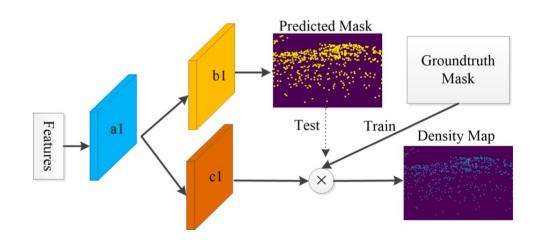
- Problem
- Related Work
- Contribution

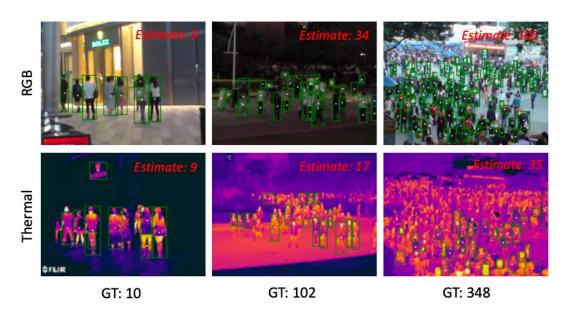




Introduction

Problem





Related Work

- Need segmentation labels
- Face difficulty in transferring between datasets with different crowd sizes

As the level of congestion increases, the incidence of missed detections becomes more pronounced.

Contribution

In this paper, we propose a novel method which utilize SAM to generate semantic map, and guide the interaction between modalities using semantic features.

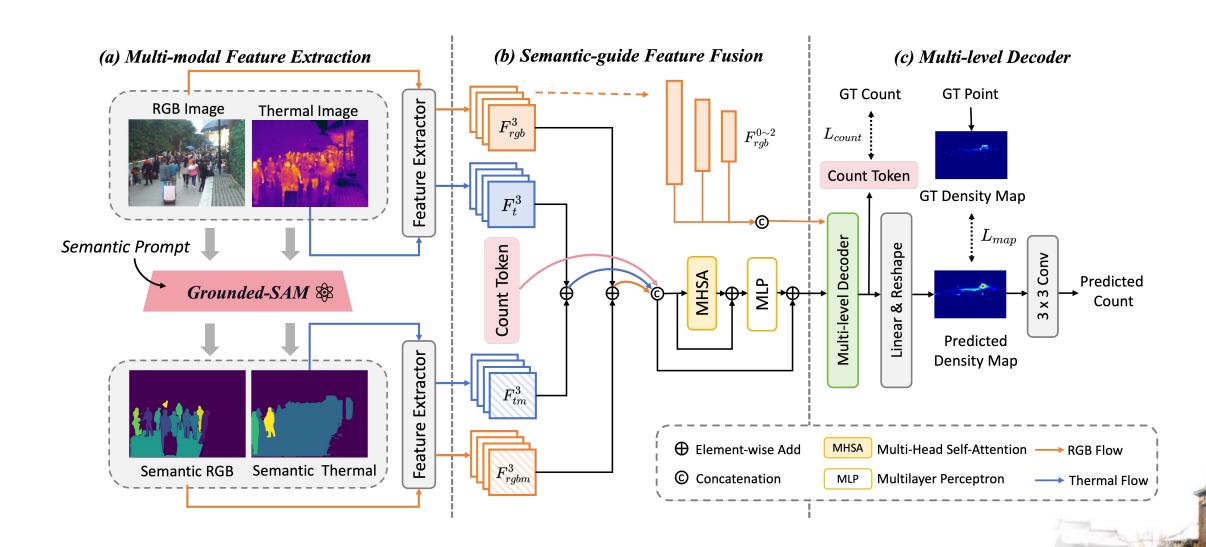
- (1)Our research is the inaugural effort to integrate SAM into RGB-T crowd counting.

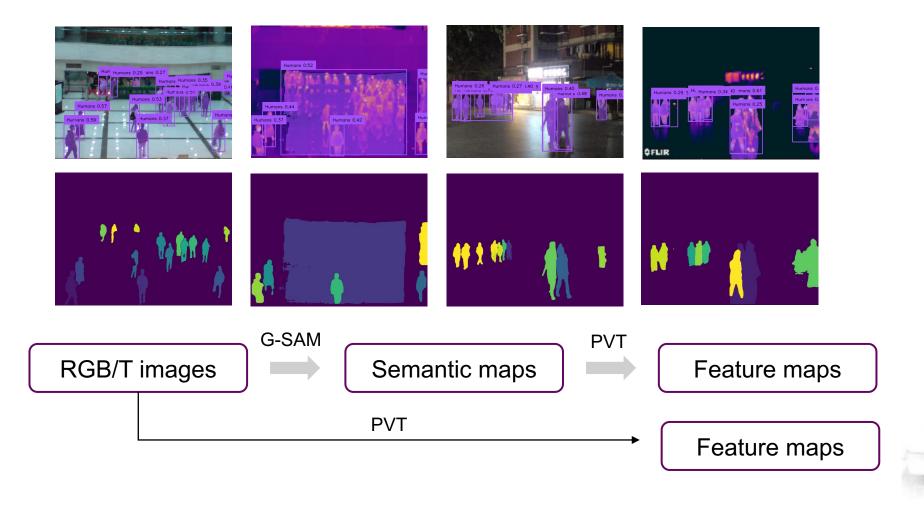
 Leveraging SAM, we innovatively generate semantic maps in both RGB and thermal modalities.
- (2) We employ semantic features to guide and enhance the representation of modal features within both RGB and thermal modalities. This approach significantly boosts the effectiveness of cross-modal feature fusion, leading to enhanced performance in crowd counting tasks.

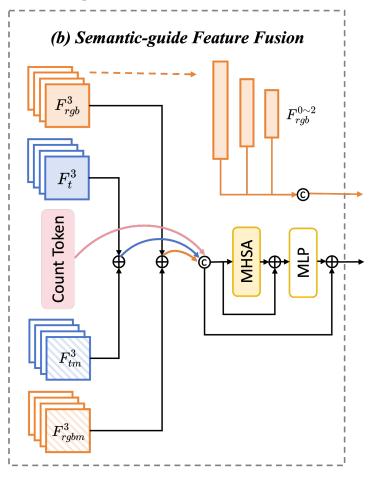
June 10–14, 2024 Dusit Thani Laguna Phuket, Thailand

MAGUS

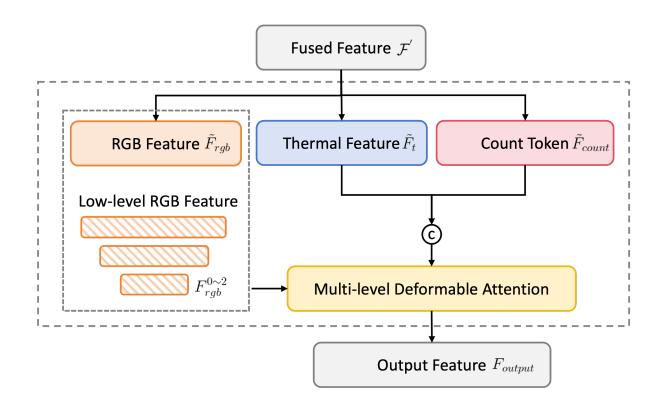
Method & Experiment


- Method
- Experiment

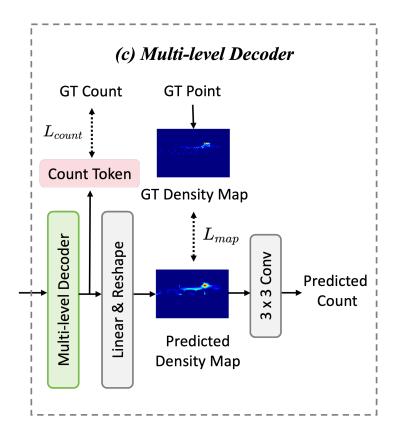



Multi-modal Feature Extraction

Semantic-guide Feature Fusion


- Add semantic features to modal features
- Concat with count token
- Use Multi-head self-attention to enhance features
- Get the fused features

Multi-level Decoder


- Split fused feature into RGB feature, thermal feature and count token
- Concat thermal feature with count token
- Use Multi-level Deformable
 Attention to integrate low-level
 feature
- Get the output feature

Loss Function

- Output feature from decoder is splited to count token and density map
- The overall loss is composed of two parts: the loss of the density map and the loss of counting

$$\mathcal{L}_{total} = \mathcal{L}_{map}\left(D, \hat{D}\right) + \mathcal{L}_{count}\left(C, \hat{C}\right),$$

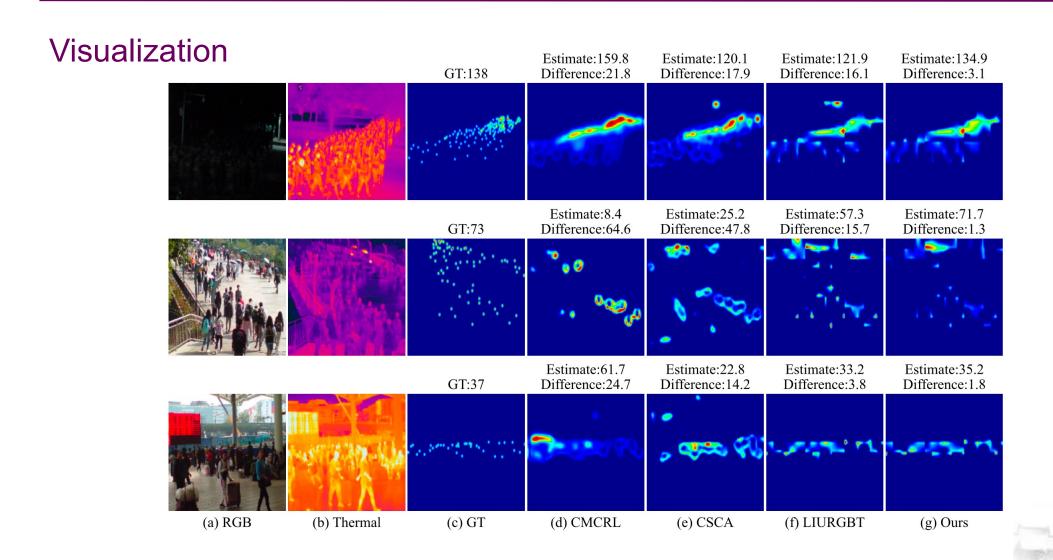
Dataset and Metrics

RGBT-CC Dataset

- Dataset
 - RGBT-CC Dataset (2030 pairs)
- Metrics
 - Grid Average Mean Absolute Error (GAME)
 - Root Mean Square Error (RMSE)

$$GAME(l) = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{4^{l}} |\hat{P}_{i}^{j} - P_{i}^{j}|, \qquad RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{P}_{i} - P_{i})^{2}},$$

Comparison with State-of-the-Arts


Methods	Publisher	Year	$GAME(0) \downarrow$	$GAME(1) \downarrow$	$GAME(2) \downarrow$	$GAME(3) \downarrow$	$RMSE\downarrow$
CMCRL [11]	CVPR	2021	15.61	19.95	24.69	32.89	28.18
MAT [28]	ICME	2022	12.35	16.29	20.81	29.09	22.53
LIURGBT [16]	BMVC	2022	10.90	<u>14.81</u>	19.02	26.14	18.79
DEFNet [35]	TITS	2022	11.90	16.08	20.19	27.27	21.09
CSCA [32]	ACCV	2022	14.32	18.91	23.81	32.47	26.01
TAFNet [25]	ISCAS	2022	12.38	16.98	21.86	30.19	22.45
CCANet [15]	TMM	2023	13.93	18.13	22.08	28.26	24.71
CSANet [9]	ESA	2023	12.45	16.46	21.48	30.62	21.64
CGINet [21]	EAAI	2023	12.07	15.98	20.06	27.73	20.54
EAEFNet [10]	RAL	2023	11.19	14.99	19.20	27.13	19.39
Ours			10.51	14.52	18.92	<u>26.28</u>	17.71

Experiment

Ablation Studies

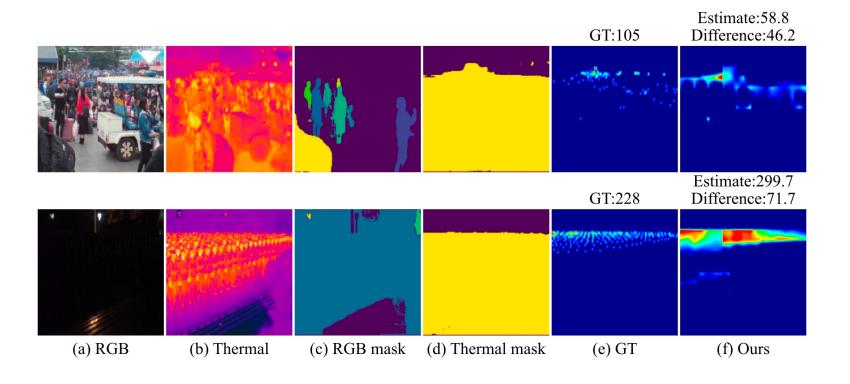
\mathcal{S}_{rgb}	\mathcal{S}_t	$GAME(0) \downarrow$	$GAME(1) \downarrow$	$GAME(2) \downarrow$	$GAME(3) \downarrow$	$RMSE\downarrow$
×	X	11.44	15.43	19.67	26.70	20.44
✓	X	10.85	15.17	19.56	26.78	19.08
X	1	10.84	15.14	19.52	26.59	18.53
1	1	10.51	14.52	18.92	26.28	17.71

Strategy	$GAME(0) \downarrow$	$GAME(1) \downarrow$	$GAME(2) \downarrow$	$GAME(3) \downarrow$	$RMSE\downarrow$
Multiply	10.92	14.96	19.51	26.62	19.70
Concat	10.95	15.30	19.68	27.10	18.49
Avg	11.48	15.55	19.96	27.94	19.30
Avg+Concat	11.00	14.76	19.02	26.24	19.33
Ours	10.51	14.52	18.92	26.28	17.71

June 10–14, 2024 Dusit Thani Laguna Phuket, Thailand

Limitation & Conclusion

MAGUS


- Limitation
- Conclusion

Failure cases

- Challenge in scenarios contain excessive crowd
- Constrain by the quality of the original image

Conclusion

In this paper, we proposed a novel semantic-guided RGB-T crowd counting method, which generates semantic maps of crowd on both RGB and thermal modalities by leveraging SAM.

Our method explored the utilization of semantic features to guide and enhance the representation of modal features through the semantic-guided fusion module. With semantic information, the false-positive counting in background is reduced, while the counting accuracy in crowd regions is improved.

The experiments on the RGBT-CC dataset demonstrate that our proposed method outperforms the state-of-the-art methods.

Dusit Thani Laguna Phuket, Thailand

Thank You!

