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ABSTRACT
RGB-Thermal (RGB-T) crowd counting leverages the complemen-
tary nature of visible light and thermal modalities for accurate
counting. However, real-world scenarios often introduce chal-
lenges, such as misidentifying background elements like trees and
lampposts as individuals, leading to inaccurate counts. Existing
methods utilize segmentation as an preliminary procedure, which
is constrained by segmentation accuracy. In this paper, we propose
a novel method, utilizing the Segment Anything Model (SAM), to
distinguish between the foreground and background of images.
Specifically, we begin by utilizing SAM to obtain the semantic
map of the original image. Subsequently, we extract the modality
features and semantic features corresponding to the RGB and
thermal modalities through multimodal feature extraction. These
features are then fused using the Semantic-guide Feature Fusion
module. Finally, the Multi-level Decoder is employed to generate
the density map and the ultimate counting results. Our approach
achieves state-of-the-art performance on the RGBT-CC dataset.
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Figure 1: Examples of special cases in RGB-T crowd counting
tasks. (a) Darkness. (b) Thermal blurring. (c) High-quality.
Blue boxes indicate possible human-like backgrounds.
Arrows represent background false detection areas in the
density map.
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1 INTRODUCTION
RGB-Thermal (RGB-T) crowd counting task is a branch of the crowd
counting task, aiming to infer the number of people in images using
RGB and thermal modal images [2, 12, 34]. In real-world scenarios,
there often arises a problem of missing modality information [5, 6,
11, 29]. As shown in Figure 1 (a) and (b), under conditions such as
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darkness or thermal blurring, the RGB and thermal modalities can
complement each other. This mutual support ensures the accuracy
of crowd counting even in challenging environments.

Current works primarily focus on facilitating interaction be-
tween these two modalities [3, 25, 28, 35], yet overlook a critical
issue: the segmentation of foreground and background areas, and
how to leverage this segmentation to guide feature interaction
within effective regions. As depicted in Figure 1, it can be observed
that in certain dark or thermally blurred conditions, background
regions may exhibit human-like characteristics, which could po-
tentially impact the counting results. To further analyze these
false detections, we draw circles using the ground truth points
as centers and a set pixel distance (with radii of 12, 16, 20 pixels)
to differentiate between foreground and background areas. The
Mean Absolute Error (MAE) is then calculated separately for these
areas. It is found that in some scenarios, the background MAE
constitutes a significant proportion of the total error, and both
missed detections in the foreground region and false detections
in the background region can occur. Therefore, distinguishing
between the foreground and background for counting purposes is
meaningful and contributes to the accuracy of the overall count.

Early research attempted to focus on crowd regions by overlaying
foreground masks with original images, thereby filtering out
background areas [7, 33]. These methods typically treat segmen-
tation as an additional branch, utilizing segmentation labels to
train a segmenter. The segmentation results are then used as a
background filter for the input image, intermediate features, or the
output feature map. However, these methods typically require real
segmentation labels of crowd areas to train the segmenter, which
consumes a significant amount of time and labor. Moreover, they
are susceptible to the varying data distributions across different
datasets , for example, difficulty in transferring between datasets
with different crowd sizes, and are not well-suited to the complex
and dynamic scenarios encountered in real-world.

With the advent of the era of large models and big data, the
powerful segmentation model, Segment Anything Model (SAM) [8],
has garnered significant attention from researchers. Pre-trained on
a wide range of datasets, SAM demonstrated excellent zero-shot
segmentation capabilities, enabling it to segment previously unseen
images based on prompts including points, boxes, masks, or text.
This has proven effective in numerous downstream tasks [1, 17,
20, 23]. Ma et al. were the pioneers in exploring the use of SAM
for few-shot counting [18]. For any given input image, they use a
bounding box of an object to be counted as a prompt for the SAM,
obtaining a mask for the target object. This mask is then compared
for similarity with the mask generated for the entire image. Objects
with similarity scores exceeding a certain threshold are counted
as the same object. Their experiments revealed that SAM, without
further fine-tuning, significantly underperforms other few-shot
counting methods, especially for small and crowded objects. In
crowd counting tasks, the individuals to be counted are often small
and densely packed. As is shown in Figure 2, directly employing
SAM for counting individual instances can be challenging to achieve
good performance. The starting point of our work is to explore how
to leverage the segmentation strengths of large models like SAM to
enable them to achieve outstanding performance in RGB-T crowd
counting tasks.
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Figure 2: Examples of counting using SAM as detector
directly. It is evident that as the level of congestion
increases, the incidence of missed detections becomes more
pronounced.

In this paper, we propose a noval method which utilize SAM to
generate semantic map, and guide the interaction between modal-
ities using semantic features. By introducing semantic regions,
the issue of false detections in the background can be reduced.
Additionally, the feature fusion guided by semantics enhances
the counting performance in crowded region. To our knowledge,
this paper is the first to apply SAM for RGB-T crowd counting.
Specifically, we first apply SAM separately to the RGB and thermal
modalities, using text with semantic information as prompts to
obtain semantic maps for each modality. The benefit of using
SAM is to avoid the need for manual annotation of segmentation
labels. Additionally, due to the zero-shot learning capability of
SAM, it is easily transferable to datasets with varying crowd sizes.
Next, we fuse the modal feature with semantic feature through a
semantic-guide feature fusion module. Finally, the fused features
and lower-level image features are fed into a multi-level decoder
to generate counting tokens and density maps, then generate the
final counting results. Our method effectively integrates semantic
and modal information to enhance the accuracy and robustness of
the counting process and achieves state-of-the-art results on the
RGBT-CC benchmark.

Overall, our work makes the following contributions: (1) Our
research is the inaugural effort to integrate SAM into RGB-
T crowd counting. Leveraging SAM, we innovatively generate
semantic maps in both RGB and thermal modalities. (2) We employ
semantic features to guide and enhance the representation of modal
features within both RGB and thermal modalities. This approach
significantly boosts the effectiveness of cross-modal feature fusion,
leading to enhanced performance in crowd counting tasks.

2 RELATEDWORK
2.1 RGB-T Crowd Counting
Thermal images exhibit insensitivity to variations in illumination
and possess a robust capability to penetrate certain particulate
matters such as dark and fog. Consequently, they can serve as
supplementary information to RGB images in the context of crowd
counting. Peng et al. introduced the DroneRGBT dataset, which
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Figure 3: The framework of the proposed method.

represents the inaugural RGB-T crowd counting dataset captured
from a drone’s perspective [22]. Liu et al. proposed the RGBT-CC
dataset, a comprehensive and extensive RGB-T crowd counting
dataset [11]. Moreover, they present a two-stream cross-modal
representation learning framework, which is a baseline approach
within the RGBT-CC benchmark. Subsequent research in this field
primarily branches into three directions:

Focus on interaction between RGB and thermalmodalities.
CSCA [32] introduces a cross-modal spatial-channel attention block,
enhancing the interaction between RGB and thermal modalities.
CCANet [15] also leverages cross-modal channel and spatial
attention mechanisms to capture complementary features from
different modalities. TAFNet [25] proposes a tri-stream network
approach, considering the combination of RGB and thermal modal-
ities as the main input stream, while aggregating information
from both modalities. MAT [28] utilizes a cross-modal mutual
attention mechanism to foster inter-modal information exchange.
EAEFNet [10] introduces an Explicit Attention-Enhanced Fusion
module, which is designed to facilitate the effective integration of
information from different modalities.

Focus on aggregation of multi-scale features. CSA-Net [15],
addressing for the first time the multi-scale issue in RGB-T crowd
counting, proposes a scale-aware feature aggregation method.
CGINet [21] introduces a hierarchical interaction method, pro-
moting the aggregation of cross-modal features at various scales.
DEFNet [35] employs a multi-level decoder to integrate features
from different levels.

Focus on guidance of auxiliary information. LIURGBT [16]
proposes a count-guided multi-modal fusion module, which utilizes
a multi-scale token transformer to interact two modal information
under the guidance of count information. Their work demonstrates
that introducing auxiliary guidance information can help improve
counting accuracy.

These works primarily focus on promoting the interaction
between modalities and the fusion of multi-scale features. However,
these previous works did not consider the interference of the back-
ground on the counting results, meaning they did not adequately
differentiate between foreground and background areas, which
could lead to some instances of false detection.

2.2 Segment Anything Model
SAM is a foundational model in the field of visual segmentation [8].
It has been trained on a massive dataset comprising 11 million
images and 1.1 billion masks, imbuing it with extensive domain
knowledge. This model primarily utilizes prompt engineering to
train a large-scale pre-trained model capable of segmentation based
on prompts.

It holds potential for application in downstream segmentation
tasks and can be combined with other visual tasks to form new
solutions for various visual challenges. Yu et al. designs Inpaint
Anything [30], a pipeline to solve inpainting-related problems by
combining the advantages of SAM. Liu et al. enables users to specify
which style region to select and which content regions to apply
during style transfer with SAM [13].

In the field of counting, Ma et al. is the first to explore the use
of the SAM for object counting [18] and finds that it falls behind
the SOTA baselines, especially for small and congested objects [31].
Thus, further improvement for SAM in some special scenes is still
needed. However, the rich prior semantic knowledge contained in
SAM can be utilized to provide a rough range estimation for crowd
areas, thereby aiding in the counting process.

2.3 Mask-guide Crowd Counting
Previous works in crowd counting have explored the utilization
of foreground segmentation maps as supplementary guidance for
crowd counting, with a specific focus on significant regions of
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Figure 4: Visualization of semantic maps generated by
Grounded-SAM. The first row is modality images, and the
second row is semantic maps generated by Grounded-SAM.

interest. Zhao et al. employed segmentation task to assist in filtering
out background interference for crowd counting [33]. Modolo et al.
proposed utilizing a mask at the output layer to suppress prediction
results in the background region, effectively improving detection
accuracy [19]. Jiang et al. proposed to use a dedicated network
branch to predict the object/non-object mask and then combine its
prediction with the input image to produce the density map [7].

Most of these approaches require generating ground truth for
segmentation as labels to guide themodel’s segmentation process or
utilize existing segmentation models to suppress the background in
the original image. In our work, we primarily leverage the rich
semantic knowledge embedded in large-scale visual models to
segment the crowd region using textual cues, eliminating the need
for explicit labels.

3 METHODOLOGY
3.1 Overview
The framework of the proposed method is depicted in Figure 3. The
overall framework primarily comprises three parts: Multi-modal
Feature Extraction, Semantic-guide Feature Fusion, and Multi-level
Decoder. Initially, given pairs of original RGB and thermal images,
Grounded-SAM [24] is used to generate corresponding modal
semantic segmentation maps with semantic inputs as prompts.
These are then input into feature extractors to separately extract
four-stage semantic and modal features for both RGB and thermal
modalities. In the Semantic-guide Feature Fusion module, the
highest-level semantic features, modal features, and count tokens
are fused. The fused highest-level features, along with low-level
features from the RGB modality, are input into the Multi-level
Decoder, which outputs the count token and density map. Finally,
a regressor is used to obtain the final predicted crowd count.

3.2 Multi-modal Feature Extraction
For a given pair of RGB and thermal images, we initially utilize
the Grounded-SAM tool1 to generate crowd region segmentation
maps containing semantic information, based on semantic prompts.
This tool is developed based on Grounding DINO [14] and Segment
Anything [8]. As illustrated in Figure 4, Grounded-DINO initially
generates object detection boxes based on semantic prompts.
Subsequently, SAMproduces areas of semantic segmentationwithin
these boxes.
1https://github.com/IDEA-Research/Grounded-Segment-Anything

To obtain representations of information at different hierarchi-
cal levels, we employ Pyramid Vision Transformer [27] as the
image encoder. It is used to extract features from four stages of
the RGB and Thermal images: 𝐹𝑟𝑔𝑏 =

{
𝐹 𝑖
𝑟𝑔𝑏

|𝑖 = 0, 1, 2, 3
}
, 𝐹𝑡 ={

𝐹 𝑖𝑡 |𝑖 = 0, 1, 2, 3
}
, as well as their corresponding semantic maps:

𝑀𝑟𝑔𝑏 =

{
𝑀𝑖
𝑟𝑔𝑏

|𝑖 = 0, 1, 2, 3
}
and𝑀𝑡 =

{
𝑀𝑖
𝑡 |𝑖 = 0, 1, 2, 3

}
.

The extracted feature maps decrease in size but increase in the
number of channels. Their sizes are 56, 28, 14, and 7, respectively,
while the number of channels are 64, 128, 320, and 512, respectively.
Different Multi-Layer Perceptron layers are used to uniformly
transform the number of channels of these feature maps to 512.
Through the Multi-modal Feature Extraction process, we acquire
various levels of modal and semantic features from both the RGB
and thermal modalities.

3.3 Semantic-guide Feature Fusion
To integrate semantic segmentation information into cross-modal
features, we propose a Semantic-guided feature fusion module. In
this module, semantic features from two modalities are individually
fused with the original features. Subsequently, the features from
both modalities are concatenated with a count token. By computing
self-attention, a unified feature representation is obtained.

Building upon previous research, it is established that higher-
level features often contain more semantic information and thus
are more beneficial for global counting. Accordingly, we merge
the highest-level features extracted from two modalities with the
highest-level features extracted from the semantic modality:

𝐺𝑟𝑔𝑏 = 𝐹 3
𝑟𝑔𝑏

⊕ 𝑀3
𝑟𝑔𝑏
, (1)

𝐺𝑡 = 𝐹
3
𝑡 ⊕ 𝑀3

𝑡 , (2)

where𝐺𝑟𝑔𝑏 and𝐺𝑡 represent the features resulting from the fusion
of the original and semantic features in the RGB and thermal modal-
ities, respectively; ⊕ represents element-wise addition; 𝐹 3

𝑟𝑔𝑏
and

𝐹 3𝑡 denote the highest-level original features of the two modalities.
Meanwhile,𝑀3

𝑟𝑔𝑏
and𝑀3

𝑡 correspond to the highest-level semantic
features of the RGB and thermal modalities, respectively.

Subsequently, we concatenate the RGB modality’s semantically
fused features, the thermal modality’s semantically fused features,
and a learnable count token along the channel dimension to form
an initial fused feature:

F = 𝐶𝑜𝑛𝑐𝑎𝑡 [𝐺𝑟𝑔𝑏 ,𝐺𝑡 , 𝑡𝑜𝑘𝑒𝑛𝑐𝑜𝑢𝑛𝑡 ], (3)

where 𝐶𝑜𝑛𝑐𝑎𝑡 [·] means the concatenation of features along the
channel dimension;𝐺𝑟𝑔𝑏 and𝐺𝑡 represent the fusion features of the
original and semantic features in the RGB and thermal modalities,
respectively; 𝑡𝑜𝑘𝑒𝑛𝑐𝑜𝑢𝑛𝑡 is a tensor initialized with zero values,
having a size of 1 × 1 and a channel count identical to the preceding
two components, which represents the initialized count token.

To further integrate the cross-modal features, we input this initial
fused feature into a multi-head self-attention module.

Specifically, the process begins with a linear layer that generates
queries, keys, and values for the input fused features. These are then
reshaped and split into 𝑛 heads. For each head, attention weights

https://github.com/IDEA-Research/Grounded-Segment-Anything
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Figure 5: Detailed process of Multi-level Decoder.

are computed by:

𝐴𝑖
ℎ𝑒𝑎𝑑

= 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑖𝐾

𝑇
𝑖√︁
𝑑𝑘

)
·𝑉𝑖 , (4)

where 𝑄𝑖 represents queries, 𝐾𝑖 represents keys, 𝑉𝑖 represents
values, 𝑖 represents the 𝑖𝑡ℎ head, and 𝐴𝑖

ℎ𝑒𝑎𝑑
denotes the attention

of the 𝑖𝑡ℎ head. Then, the attention computed by each head is con-
catenated and reshaped, yielding the final attention representation:

A = 𝐶𝑜𝑛𝑐𝑎𝑡 [𝐴1
ℎ𝑒𝑎𝑑

, 𝐴2
ℎ𝑒𝑎𝑑

, . . . , 𝐴𝑛
ℎ𝑒𝑎𝑑

] · 𝜔0, (5)

whereA represents the final attention. Here,𝑛 is the total number of
heads,𝐶𝑜𝑛𝑐𝑎𝑡 refers to the concatenation operation,𝐴𝑖

ℎ𝑒𝑎𝑑
denotes

the attention of each head, and 𝜔0 is the final linear transformation
matrix.

Following this, the output from the multi-head self-attention
is added back to the original input features through a residual
connection. This is then passed through an MLP layer, and once
again added back to the original input features through another
residual connection, resulting in the final fused feature:

F
′
= F ⊕ 𝑀𝐿𝑃 (F ⊕ A), (6)

where F ′
is the final fused feature, F is the initial fused feature,

A represents the output of the multi-head self-attention, and ⊕
indicates the addition operation. The final feature effectively inte-
grates semantic information, RGB modality information, thermal
modality information, and counting information.

3.4 Multi-level Decoder
Based on previous research, it is established that the low-level
features of images often encompass a wealth of information
pertaining to colors, textures, and contours, among other shape-
related aspects. In contrast, higher-level features are typically more
imbued with semantic information. To facilitate the integration of
features across different levels, this study adopts a decoder based
on multi-scale deformable attention mechanism, as proposed by
Liu et al. [16], to achieve the fusion of information across multiple
scales.

Specifically, as detailed in Section 3.3, F ′
is segmented into

𝐹𝑟𝑔𝑏 , 𝐹𝑡 , and 𝐹𝑐𝑜𝑢𝑛𝑡 , each corresponding to the size of the original
input features. As shown in Figure 5, then the process commences

with the concatenation of 𝐹 ′𝑡 and 𝐹𝑐𝑜𝑢𝑛𝑡 . This is followed by the
aggregation of 𝐹𝑟𝑔𝑏 with the features extracted from the initial three
layers. The culmination of this procedure involves the computation
of their multi-level deformable attention, which is designated as
the output. The specific computational formula employed in this
methodology is as follows:

𝐹𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑀𝑆𝐷𝐴𝑡𝑡

(
𝐶𝑜𝑛𝑐𝑎𝑡 [𝐹𝑡 , 𝐹𝑐𝑜𝑢𝑛𝑡 ], {𝐹𝑟𝑔𝑏 , 𝐹 0𝑟𝑔𝑏 , 𝐹

1
𝑟𝑔𝑏
, 𝐹 2

𝑟𝑔𝑏
}
)
, (7)

where 𝐹𝑜𝑢𝑡𝑝𝑢𝑡 refers to the output of the decoder;𝑀𝑆𝐷𝐴𝑡𝑡 denotes
the Multi-scales Deformable Attention Mechanism [36]; 𝐶𝑜𝑛𝑐𝑎𝑡
is used to describe the concatenation of feature maps; 𝐹𝑡 , 𝐹𝑟𝑔𝑏 ,
and 𝐹𝑐𝑜𝑢𝑛𝑡 are features derived from the segmented fusion feature
F ′

; 𝐹 0
𝑟𝑔𝑏

to 𝐹 2
𝑟𝑔𝑏

represent the features from the first three layers
of the original RGB input; 𝐹𝑜𝑢𝑡𝑝𝑢𝑡 , is divided into two distinct
components: 𝐹𝑚𝑎𝑝 and 𝐹𝑐 . Here, 𝐹𝑚𝑎𝑝 represents the features of
the density map, while 𝐹𝑐 corresponds to the counting features.
𝐹𝑐 undergoes a linear transformation to generate the count token.
𝐹𝑚𝑎𝑝 , after being processed through a 3×3 convolutional layer to
revert to its original size, yields the final count result.

3.5 Loss Function
The overall loss is composed of two parts: the loss of the density
map and the loss of counting. The density map loss originates from
DM-Count [26], which uses Optimal Transport to measure the
similarity between the normalized predicted density map and the
normalized ground truth density map. The counting loss employs
the L1 norm to supervise the predicted count against the actual
count.

L𝑡𝑜𝑡𝑎𝑙 = L𝑚𝑎𝑝

(
𝐷, �̂�

)
+ L𝑐𝑜𝑢𝑛𝑡

(
𝐶,𝐶

)
, (8)

where 𝐷 represents the predicted density map, �̂� represents the
actual density map, 𝐶 denotes the predicted count, and 𝐶 signifies
the actual count.

4 EXPERIMENT
4.1 Dataset and Metrics
Our method is evaluated on the publicly available RGBT-CC
dataset [11] . RGBT-CC is a recently introduced benchmark, stands
as a large-scale, free-view, multimodal crowd counting dataset. It
comprises 2,030 pairs of RGB-T images. The dataset is partitioned
into 1,030 pairs for training, 200 pairs for validation, and 800 pairs
for testing purposes. This dataset presents a formidable challenge,
featuring images captured under diverse illumination conditions
across a variety of settings, including malls, streets, playgrounds,
and stations. On average, each image in this dataset is marked with
point annotations for approximately 68 pedestrians, illustrating its
complexity and the richness of data it offers for crowd counting
analyses.

We use the widely used Grid Average Mean Absolute Error
(GAME) [4] and Root Mean Square Error (RMSE) [11] to evaluate
our method. GAME at level 𝑙 is computed as:

𝐺𝐴𝑀𝐸 (𝑙) = 1
𝑁

𝑁∑︁
𝑖=1

4𝑙∑︁
𝑗=1

|𝑃 𝑗
𝑖
− 𝑃 𝑗

𝑖
|, (9)
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Table 1: Comparison results of the proposed method against the competing trackers on RGBT-CC test set. The best results are
highlighted in Bold and the second results are indicated with an underline.

Methods Publisher Year 𝐺𝐴𝑀𝐸 (0) ↓ 𝐺𝐴𝑀𝐸 (1) ↓ 𝐺𝐴𝑀𝐸 (2) ↓ 𝐺𝐴𝑀𝐸 (3) ↓ 𝑅𝑀𝑆𝐸 ↓
CMCRL [11] CVPR 2021 15.61 19.95 24.69 32.89 28.18
MAT [28] ICME 2022 12.35 16.29 20.81 29.09 22.53
LIURGBT [16] BMVC 2022 10.90 14.81 19.02 26.14 18.79
DEFNet [35] TITS 2022 11.90 16.08 20.19 27.27 21.09
CSCA [32] ACCV 2022 14.32 18.91 23.81 32.47 26.01
TAFNet [25] ISCAS 2022 12.38 16.98 21.86 30.19 22.45
CCANet [15] TMM 2023 13.93 18.13 22.08 28.26 24.71
CSANet [9] ESA 2023 12.45 16.46 21.48 30.62 21.64
CGINet [21] EAAI 2023 12.07 15.98 20.06 27.73 20.54
EAEFNet [10] RAL 2023 11.19 14.99 19.20 27.13 19.39

Ours 10.51 14.52 18.92 26.28 17.71

where 𝑃 𝑗
𝑖
represents the predicted value of the 𝑗𝑡ℎ region of the 𝑖𝑡ℎ

image, 𝑃 𝑗
𝑖
indicates the ground truth corresponding to 𝑃 𝑗

𝑖
, 4𝑙 means

the number of the divided non-overlapping regions of the image,
and 𝑁 is the number of paired images in testing dataset. GAME
sums the counting errors in all the regions. In particular, GAME(0)
is equivalent to MAE. RMSE is computed as:

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑃𝑖 − 𝑃𝑖 )2, (10)

where 𝑃𝑖 represents the predicted value of the 𝑖𝑡ℎ image, 𝑃𝑖 indicates
the ground truth corresponding to 𝑃𝑖 .

4.2 Implementation Details
Data preprocessing. The original RGB and thermal images in
the dataset possess a resolution of 640×480 pixels. To facilitate
processing, these images have undergone a reshaping operation,
altering their dimensions to 672×448 pixels. This modification is to
enable the subdivision of the images into patches, each measuring
224×224 pixels.

Acquisition of semantic information. In order to acquire
masks imbued with semantic information via SAM, our approach
utilizes a tool constructed on the foundation of SAM and Grounding
DINO for the extraction of crowd region masks. More specifically,
we employ the pretrained models 𝑔𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑑𝑖𝑛𝑜_𝑠𝑤𝑖𝑛𝑡_𝑜𝑔𝑐.𝑝𝑡ℎ
and 𝑠𝑎𝑚_𝑣𝑖𝑡_ℎ_4𝑏8939.𝑝𝑡ℎ. The text prompt “𝐻𝑢𝑚𝑎𝑛𝑠” is used in
this process. The parameters set for the extraction include a box
threshold of 0.25, a text threshold of 0.25, and a Non-Maximum
Suppression (NMS) threshold of 0.8. These thresholds are integral
in delineating the boundaries of human presence in the images,
thereby allowing for the precise extraction of crowd region masks.

Training details. Our networks are trained using the Adam
optimizer with a batch size of 16, an initial learning rate of 2e-5,
with 30 epochs for warm up. The model is trained for 500 epochs
with a learning rate decay of 1e-4. Both the training and testing of
our model are conducted using PyTorch1.11.0 on an NVIDIA RTX
3090 GPU with 24GB memory.

4.3 Comparison with State-of-the-Arts
We compared ten methods on the RGBT-CC benchmark, which
are as follows: CMCRL [11], CSCA [32], CCANet [15], CSANet [9],
TAFNet [25], MAT [28], CGINet [21], DEFNet [35], EAEFNet [10]
and LIURGBT [16].

Diverging from other comparative methods, our method is
specifically designed to incorporate semantic information to assist
in the fusion of cross-modal features. Semantic information plays
a crucial role in distinguishing between foreground areas with
crowds and background regions. The differentiation is instrumental
in enabling the model to focus more accurately on counting within
crowd areas, while effectively suppressing the interference caused
by background information.

Quantitative evaluation. Our method, along with various
others, was evaluated on the RGBT-CC benchmark, as demonstrated
in Table 1. Our approach achieved the best performance in terms
of four key metrics: GAME(0), GAME(1), GAME(2), and RMSE. In
GAME(3), it ranked second. Evaluating the overall counting perfor-
mance, the MAE, represented by GAME(0), showed a reduction of
0.39, and the RMSE decreased by 1.08. These results substantiate the
effectiveness of incorporating semantic information in enhancing
the accuracy of crowd counting.

The significant improvements highlight the advantage of inte-
grating semantic context into the analysis. By doing so, the model
more effectively differentiates between crowd and non-crowd areas,
leading to a more focused and precise counting. This advancement
demonstrates the potential of semantic information in refining the
accuracy of crowd counting methodologies.

Qualitative evaluation. The comparative visualization of our
method against others is illustrated in Figure 6. Our method was
compared with CMCLR, CSCA, and LIURGBT methods across a
variety of scenarios. It is evident that our approach yields more
accurate counting results in typical environments such as dark,
crowded, and thermally blurred scenes. Additionally, an analysis of
the density map distributions reveals that our method concentrates
the predictions more effectively in crowd areas. By integrating
semantic information, our approach enhances the accuracy of the
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GT:138
Estimate:159.8
Difference:21.8

Estimate:120.1
Difference:17.9

Estimate:121.9
Difference:16.1

Estimate:134.9
Difference:3.1

GT:73
Estimate:8.4

Difference:64.6
Estimate:25.2

Difference:47.8
Estimate:57.3

Difference:15.7
Estimate:71.7
Difference:1.3

(a) RGB (b) Thermal (c) GT

GT:37

(d) CMCRL

Estimate:61.7
Difference:24.7

(e) CSCA

Estimate:22.8
Difference:14.2

(f) LIURGBT

Estimate:33.2
Difference:3.8

(g) Ours

Estimate:35.2
Difference:1.8

Figure 6: Visual examples in three different scenarios: dark, crowded, and thermally blurred environments. “Estimate” refers to
the predicted number of people, while “Difference” denotes the deviation from the actual count.

Table 2: Ablation experiments concerning the integration of
semantic maps on RGBT-CC test set. S𝑟𝑔𝑏 indicates whether
the semantic maps of the RGB modality is integrated, and S𝑡
denotes the integration of the semantic maps for the thermal
modality. The best results are highlighted in Bold.

S𝑟𝑔𝑏 S𝑡 𝐺𝐴𝑀𝐸 (0) ↓ 𝐺𝐴𝑀𝐸 (1) ↓ 𝐺𝐴𝑀𝐸 (2) ↓ 𝐺𝐴𝑀𝐸 (3) ↓ 𝑅𝑀𝑆𝐸 ↓

✗ ✗ 11.44 15.43 19.67 26.70 20.44
✓ ✗ 10.85 15.17 19.56 26.78 19.08
✗ ✓ 10.84 15.14 19.52 26.59 18.53
✓ ✓ 10.51 14.52 18.92 26.28 17.71

predictive distribution, ensuring that the focus is maintained on
regions with higher concentrations of people.

However, as depicted in Figure 7, our method encounters
challenges in scenarios characterized by excessive crowding and
an overwhelming number of individuals, resulting in suboptimal
performance. In some scenarios, our method is still constrained
by the quality of the original image. When Grounded-SAM fails
to accurately differentiate the regions containing humans, the
counting performance remains unsatisfactory. These issues warrant
more in-depth research in the future.

4.4 Ablation Studies
To ascertain the effectiveness of semantic information and the effi-
cacy of the Semantic-guided Feature Fusionmodule, we conducted a

Table 3: Ablation experiments concerning the fusion strategy
of semantic maps on RGBT-CC test set. The best results are
highlighted in Bold.

𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝐺𝐴𝑀𝐸 (0) ↓ 𝐺𝐴𝑀𝐸 (1) ↓ 𝐺𝐴𝑀𝐸 (2) ↓ 𝐺𝐴𝑀𝐸 (3) ↓ 𝑅𝑀𝑆𝐸 ↓
Multiply 10.92 14.96 19.51 26.62 19.70
Concat 10.95 15.30 19.68 27.10 18.49
Avg 11.48 15.55 19.96 27.94 19.30
Avg+Concat 11.00 14.76 19.02 26.24 19.33
Ours 10.51 14.52 18.92 26.28 17.71

series of ablation experiments. These experiments were specifically
designed to address two key aspects: the integration of semantic
information and the effective fusion of this semantic information
into the model.

Whether to add semantic information. We conducted
ablation experiments to assess the impact of integrating semantic in-
formation on detection results. These experiments included various
configurations: not integrating any semantic maps, integrating the
semantic maps only for the RGB modality, integrating the semantic
maps only for the thermal modality, and integrating semantic maps
for both modalities. The results, as shown in Table 2, indicate that
the addition of semantic information contributes to an increase
in detection accuracy. It is evident that the semantic information
from both the RGB and thermal modalities provides beneficial
enhancements to the detection process.
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GT:105
Estimate:58.8

Difference:46.2

(a) RGB (b) Thermal (c) RGB mask (d) Thermal mask (e) GT

GT:228

(f) Ours

Estimate:299.7
Difference:71.7

Figure 7: Visualizations of some failure cases.

How to effectively integrate semantic information. We
carried out ablation experiments to evaluate the effects of different
fusion strategies on detection results. These experiments tested
various approaches, including the pointwise multiplication of
original modality information with semantic modality information,
concatenation, averaging, concatenation after averaging, and our
proposed fusion module. Specifically:

• Pointwise multiplication involves element-wise multiplica-
tion of modality feature maps with semantic feature maps.

• Concatenation refers to joining the modality feature maps
and semantic feature maps along the channel dimension,
followed by a 1×1 convolution to restore the original shape.

• Averaging entails using the average of semantic features
from both modalities added to the original modality features
for fusion.

• Concatenation after averaging involves joining the average
semantic features from both modalities with the original
modality features.

The experimental results, as shown in Table 3, demonstrate that
our proposed Semantic-guided Feature Fusion Module outperforms
other fusion methods. This finding highlights the superiority of
our approach in effectively combining semantic and modality-
specific features, thereby enhancing the accuracy and efficacy of
the detection process.

5 CONCLUSION
In this paper, we proposed a novel semantic-guided RGB-T crowd
counting method, which generates semantic maps of crowd on
both RGB and thermal modalities by leveraging SAM. Our method
explored the utilization of semantic features to guide and enhance
the representation of modal features through the semantic-guided
fusion module. With semantic information, the false-positive
counting in background is reduced, while the counting accuracy
in crowd regions is improved. The experiments on the RGBT-CC
dataset demonstrate that our proposed method outperforms the
state-of-the-art methods.
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