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ABSTRACT
As talking takes a large proportion of human lives, it is necessary to
perform deeper understanding of human conversations. Speaking
style recognition is aimed at recognizing the styles of conversations,
which provides a fine-grained description about talking. Current
works focus on adopting only visual clues to recognize speaking
styles, which cannot accurately distinguish different speaking styles
when they are visually similar. To recognize speaking styles more
effectively, we propose a novel multimodal sentiment-fused method,
MMSF, which extracts and integrates visual, audio and textual fea-
tures of videos. In addition, as sentiment is one of the motivations
of human behavior, we first introduce sentiment into our multi-
modal method with cross-attention mechanism, which enhance the
video feature to recognize speaking styles. The proposed MMSF is
evaluated on long-form video understanding benchmark, and the
experiment results show that it is superior to the state-of-the-arts.
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1 INTRODUCTION
Each person on average takes part in talkings of 14,878 words
each day, which lasts about an hour and fifteen minutes. This is
what happened in a case study about human conversations [21],
which proves that talking accounts for a large proportion in human
daily lives. To further understand human activities, it is necessary
to conduct deep studies on human conversations. Speaking style
recognition (SSR) aims to identify the conversation styles among
characters in videos. As shown in Figure 1, speaking styles can
reflect the state of human conversations. Recognizing speaking
styles enables us to understand “how” the characters talk rather
than just “talk”, which helps us to construct a more fine-grained
understanding of human conversations in videos.

In addition to contributing to more accurate understanding of
conversations among characters, speaking style recognition can fur-
ther assist other video understanding tasks by providing speaking

Figure 1: Examples of different speaking styles of human
conversations.
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Figure 2: An example of comparison among different speak-
ing styles on different modalities.

style contexts, such as video description generation, visual question
answering and video retrieval.

Most of the solutions to SSR focus on analyzing videos from the
visual perspective, such as ViS4mer [15] and STAN [9]. However, it
is of high possibility that videos of different speaking styles seem
similar because most of them are photographed in the form of
“someone talking to the other one”. Speaking style, as an attribute
of human conversation, necessarily has a strong correlation with
audio and text. Especially when visual differences are not obvious,
audio and text can provide more concrete information. For example
in Figure 2, two speaking styles, confront and discuss, both visually
seem like talking between a couple, but they are obviously different
in the audiograms. At the same time, contents of their conversations
are different. Compared to discuss, people tend to speakmore modal
particles such as “Hey!” when speaking style of their conversation
is “confront”. Therefore, we design a multimodal pipeline to predict
the speaking styles by integrating visual, audio and textual features,
which helps distinguish similar speaking styles more effectively.

Current works on SSR conduct analysis on movie clips. A movie
clip is a segment cut from a movie and records a complete plot,
which lasts one to three minutes. It is hard to analyze a movie
clip because it contains various information. It is required to cap-
ture feature expressions of high distinctiveness to help recognize
speaking styles. Sentiment is one of the motivations of human
behavior, which has a close relationship with the style of human
conversations. As shown in Figure 3, people whose sentiments are
anger and fear are more likely to be associated with speaking style

Figure 3: An example of showing the relationship between
speaking styles and sentiments of characters.

like “threaten” rather than other speaking styles like “teach”. It is
obvious that the sentiments of characters can help identify differ-
ent speaking styles. As a result, we propose MMSF, a multimodal
sentiment-fused method, which introduces sentiment influence into
multimodal pipeline to enhance video feature.

Our methods firstly extracts multimodal and sentiment features
of each modality of movie clips. It then fuses multimodal and senti-
ment features of corresponding modalities with the help of cross-
attention mechanism. Multimodal sentiment-fused features is fi-
nally used to recognize the speaking style of movie clips.

We evaluate MMSF on long-form video understanding (LVU)
dataset [24], where SSR is firstly proposed. The performance of
MMSF achieves the best one.

In general, the main contributions of our work can be summa-
rized as follows: (1)We propose amultimodal pipeline, whichmakes
use of vision, audio and text modalities, to identify the speaking
style of conversations between characters in movie clips. (2)We first
introduce the effect of sentiment into multimodal method by calcu-
lating cross attention between sentiment and common multimodal
features.

2 RELATEDWORK
2.1 Multimodal Video Analysis
Early video classification mainly use Convolutional Neural Net-
works (CNN), which is highly effective at video classification tasks
but are computationally intensive to train. To address computa-
tional overhead in training convolutional video networks, Feicht-
enhofer et al.[8] propose an efficient CNN to improve the perfor-
mance of video classification, which utilizes a fast and slow tem-
poral sampling stream. Recently, some transformer-based video
classification models have been proposed to work effectively for
video classification, such as ViViT [2], Video Swin Transformer [17]
and MeMViT [25]. Most of these methods tend to model the visual
spatial and temporal correlation of videos, which is of high effec-
tiveness in video analysis tasks that are closely related to sequential
information, such as action recognition. However, to understand
the storyline of movie clips, it is necessary to pay more attention to
all the behaviors of characters, including their actions and words.
So multimodal analysis is necessary.

There have been many multimodal video models so far. Multi-
modal Transformer [23] proposes the directional pairwise cross-
modal attention to resolve alignment and dependencies between
different modalities. Videobert [22],which is a joint visual-linguistic
model, is built upon the BERT model to learn bidirectional joint
distributions over sequences of visual and linguistic tokens. Video-
Audio-Text Transformer [1] takes raw signals as inputs and ex-
tracts multimodal representations for video analysis. I-code [27]
is a framework where users may flexibly combine the modalities
of vision, speech, and language into unified and general-purpose
vector representations.

2.2 Video Sentiment Analysis
There are also some models of sentiment analysis that focus on the
design of single-modal features. Xu et al. [26] used a pre-trained
CNN as a provider of high-level visual attribute descriptors in
order to train two sentiment classifiers based on logistic regression.
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Figure 4: An overview of MMSF. Here, 𝑣 , 𝑎 and 𝑡 are original visual, audio and textual features; 𝑓𝑣 , 𝑓𝑎 and 𝑓𝑡 are multimodal
features which have been updated with timing information; 𝑠𝑣 , 𝑠𝑎 and 𝑠𝑡 are multimodal sentiment features; 𝑣𝑠 , 𝑎𝑠 and 𝑡𝑠 are
multimodal sentiment-fused features.

Progressive CNN [28] proposed to use a progressive approach for
training a CNN in order to perform visual sentiment analysis. Cao
et al. [5] focused on textual sentiment analysis where only words
are used to analyze the sentiment, ignores the interdependencies
and relations among the utterances of a video.

Multimodal sentiment analysis is a developing area of research.
Morency et al. [19] aim at identifying the sentiment of a speaker by
gaining clues from multimodal signals, including textual, visual and
acoustic channels. Generally, different modalities are often com-
plementary to each other, providing extra cues for semantic and
sentimental disambiguation [20]. MISA [13] projects each modal-
ity to two distinct subspaces, and provides a holistic view of the
multimodal data, which is used for fusion that leads to task predic-
tions. Multimodal-informax [11] synthesizes fusion results from
multi-modality input through a two-level mutual information max-
imization. BBFN [10] learns two text-related pairs of representa-
tions, which is text-acoustic and text-visual, enforcing each pair of
modalities to complement mutually. Compared with single-modal
sentiment analysis, multi-modal sentiment analysis can integrate
more contextual information and achieve better performance.

Although sentiment is one of the inspirations of human behav-
iors, overall information is acquired to analyze the comprehensive
content of a video. MMSF firstly extracts spatial-temporal features
of videos, which are then integrated with sentiment features by
cross-attention encoder as the final classification features.

2.3 Long-Form Video Understanding
LVU [24] benchmark is proposed to understand the full picture
of a movie clip. Wu et al. [24] collect movie clips from publicly
available MovieClips [29] and introduce the LVU benchmark, which
contains nine diverse tasks covering a wide range of aspects of
long-form video understanding. The nine tasks are of three types:
Relationship, Scene/Place and Speaking Style Classification are of
content understanding type; “Like” Ratio and “Popularity” Prediction
is of user engagement type; Director,Writer, Genre and Release Year
Recognition are of movie metadata type.

There are some work studying on LVU, SSR certainly included.
The Object Transformer [24] adopts a Transformer architecture
and a variety of external modules to handle LVU tasks. Recently,
ViS4mer [15] is proposed, which is an efficient long-range video
model that combines the strengths of self-attention and the struc-
tured state-space sequence layer. STAN [9], which models depen-
dencies between static image features and temporal contextual fea-
tures using a two-stream transformer architecture, achieves good
performance on LVU tasks. Movie2Scenes [6] uses all available in-
formation to generate a general-purpose scene-level representation
by contrastive learning.

These methods are designed to deal with all tasks of LVU bench-
mark. However, tasks of LVU are of totally different types. Some
focus on contents while others pay attention to metadata of videos.
MMSF paymore attention to the characteristics of tasks, rather than
applying the same processing steps to quite different tasks. Due to
speaking style is an attribute of conversations among characters,
MMSF not only takes multimodal information into consideration
but also introduces sentiment features to help recognition.

3 METHOD
As shown in Figure 4, the input of MMSF is a movie clip and the
output is the speaking style classification results. Original visual,
audio and textual features are firstly extracted with the help of
feature extraction tools, and then they are respectively input into
video LSTM, audio LSTM and BERT to model temporal information.
At the same time, a pre-trained multimodal sentiment recognition
model is applied to obtain sentiment features of different modal-
ities. Sentiment features are then input to processing layers to
obtain the most related sentiments and filter out irrelevant noise.
After that, multimodal features are fused with the corresponding
sentiment features with the help of cross-attention encoder. Multi-
modal classification results are obtained after handling multimodal
sentiment-fused features with multiple classifiers. Multimodal re-
sults are integrated by late fusion strategy with different weights
to generate the final recognition results.
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3.1 Multimodal Feature Extraction
Movie clips are firstly transformed into frames, which are then
input to openface [3] to generate original visual features 𝑓𝑣 . Audio
is extracted from videos by ffmpeg command tools [4], and then are
input to librosa [18] to obtain original audio features 𝑓𝑎 . As for text,
subtitle generation tools, which are Deep Speech [12] and YouTube
Transcript API [16], are applied to generate subtitles of movie clips.
A pretrained BERT tokenizer is then used to tokenize the speech
texts to obtain the corresponding tokens 𝑓𝑡 .

To extract timing information of multimodal features, 𝑓𝑣 and 𝑓𝑎
are input to single directional Long Short-Term Memory models
(sLSTM) [14], which helps generate visual features 𝐹𝑣 and audio
features 𝐹𝑎 that bring temporal information. Since NLPmodels have
made great success, a BERT [7] is applied to extract the sequential
features of texts from 𝑓𝑡 . We choose the outputs of the last layer as
textual representations 𝐹𝑡 :

𝐹𝑖 = F𝑠𝐿𝑆𝑇𝑀
(
𝑓𝑖 ;𝜃𝑙𝑠𝑡𝑚𝑖

)
, 𝑖 ∈ {𝑣, 𝑎}, (1)

𝐹𝑡 = F𝐵𝐸𝑅𝑇
(
𝑓𝑡 ;𝜃𝑏𝑒𝑟𝑡

)
, (2)

where F𝑠𝐿𝑆𝑇𝑀 and 𝜃𝑙𝑠𝑡𝑚 represent LSTM network and its parame-
ters, F𝐵𝐸𝑅𝑇 and 𝜃𝑏𝑒𝑟𝑡 represent BERT network and its parameters,
𝑣 , 𝑎 and 𝑡 refer to vision, audio and text modalities, respectively.

3.2 Sentiment Feature Extraction
We apply a multimodal sentiment analysis model, SelfMM [30],
which focuses on the information complementation among different
modalities, as our multimodal sentiment feature extraction model.
The product of penultimate layer before final result will be taken
as sentiment features:

𝑆 ′𝑖 = F𝑆𝑒𝑙 𝑓 𝑀𝑀

(
𝑓𝑖 ;𝜃𝑠𝑒𝑙 𝑓𝑚𝑚

)
, 𝑖 ∈ {𝑣, 𝑎, 𝑡}, (3)

whereF𝑆𝑒𝑙 𝑓 𝑀𝑀 and𝜃𝑠𝑒𝑙 𝑓𝑚𝑚 represent the network and pretrained
parameters of SelfMM, 𝑣 , 𝑎 and 𝑡 refer to vision, audio and text
modalities.

The sentimentmodel we used is pretrained on sentiment datasets.
Considering that not all sentiments detected are related to the
target speaking style, it is necessary to pay more attention to those
effective ones and filter out noise. As a result, a 1D convolutional
layer followed by a max pooling layer is used to process the outputs
of SelfMM to enhance sentiment features:

𝑆𝑖 = 𝑔(𝜙 (𝑆 ′𝑖 )), 𝑖 ∈ {𝑣, 𝑎, 𝑡}, (4)

where 𝜙 is a 1D convolutional layer and 𝑔(·) is a max pooling
operator, and 𝑣 , 𝑎 and 𝑡 refer to vision, audio and text modalities.

3.3 Sentiment Fusion
We design a cross-attention encoder to fuse multimodal features
and their corresponding sentiment features. The cross-attention
encoder consists of multiple layers and each attention layer consists
of multiple attention heads. Figure 5 shows the multi-head atten-
tion layer of cross-attention encoder. The multiplication of query
and key represents the similar map between them. Then the other
multiplication operation on the similar map and value will generate
the attention map which is from key/value to query. As a result,
when key, value and query are set from different data sources, the

Figure 5: The illustration of the cross-attention encoder we
used to fuse sentiment features and multimodal features.
Here, Q, K andV refer to query, key and value;Multiply, Add,
Norm respectively denote matrix multiplication, matrix ad-
dition and layer normalization operations; FFN represents a
feed forward network.

effect of one source can be made to the other one by generating
attention map and adding it to the target data source.

For example, to pass the influence of visual sentiment features 𝑆𝑣
to visual temporal features 𝐹𝑣 , in each attention head, the attention
from 𝑆𝑣 to 𝐹𝑣 can be calculated as follows:

𝑄 = 𝐹𝑣 ×𝑊𝑞 + 𝑏𝑞, (5)
𝐾 = 𝑆𝑣 ×𝑊𝑘 + 𝑏𝑘 , (6)
𝑉 = 𝑆𝑣 ×𝑊𝑢 + 𝑏𝑢 , (7)

𝐴 𝑗 = softmax

(
𝑄T
𝑗
× 𝐾𝑗√
𝑑 𝑗

)
×𝑉 T

𝑗 , 𝑗 ∈ {1, ..., 𝑛}, (8)

where𝑊𝑞 , 𝑏𝑞 ,𝑊𝑘 , 𝑏𝑘 ,𝑊𝑢 and 𝑏𝑢 are the weights and bias of linear
layers in each head to transformmultimodal and sentiment features
to key, value and query, 𝑛 is the number of attention heads, T is a
matrix transposition operation,𝑑 is scaled factor. Then the attention
outputs of all heads will be fused together by concat and a linear
layer will be used to update them:

𝐴 = (𝐴T
1 ⊕ 𝐴T

2 ⊕ ... ⊕ 𝐴T
𝑛 ) ×𝑊𝑜 + 𝑏𝑜 , (9)

where 𝑛 is the number of attention heads, ⊕ is a concat operation,
T is a matrix transposition operation,𝑊𝑜 and 𝑏𝑜 are the weights
and bias of the linear layer to update the concat of attention maps.

Sentiment-fused features are obtained after adding the attention
map 𝐴 to the visual features 𝐹𝑣 . The layer normalization is then
conducted to process the original sentiment-fused features. Finally,
a feed forward network is applied to perform updates and generate
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the final outputs 𝑋𝑣 :

𝑋 ′
𝑣 = F𝐿𝑁 (𝐴 + 𝐹𝑣), (10)

𝑋 ′′
𝑣 = F𝐹𝐹𝑁 (𝑋 ′

𝑣) (11)
= max(0, 𝑋 ′

𝑣 ×𝑊1 + 𝑏1) ×𝑊2 + 𝑏2,
𝑋𝑣 = F𝐿𝑁 (𝑋 ′′

𝑣 + 𝑋 ′
𝑣), (12)

where F𝐿𝑁 is the layer normalization operation, F𝐹𝐹𝑁 is the feed
forward network,𝑊1, 𝑏1,𝑊2 and 𝑏2 are the weights and biases of
the feed forward network. In this way, sentiment-fused multimodal
features 𝑋𝑣 , 𝑋𝑎 and 𝑋𝑡 are finally obtained.

In order to explore the performances of different sentiment fusion
methods, we also take dot product of multimodal features and
sentiment features as another fusion strategy. Taking visual feature
as an example:

𝑋𝑣 = 𝜙 𝑓 (𝐹𝑣) · 𝜙𝑠 (𝑆𝑣), (13)

where 𝐹𝑣 are visual temporal features, 𝑆𝑣 are visual sentiment fea-
tures, 𝑐𝑑𝑜𝑡 is a dot product operation,𝜙 here is aimed at aligning the
dimensions of temporal and sentiment features by a convolutional
layer. The comparison between using cross-attention encoder and
direct dot product to fuse sentiments can be seen in the ablation
experiments in shown in Section 4.2.

3.4 Multimodal Fusion
Generally, early fusion strategies, such as concat, are used as the
final fusion strategy among multimodal features. As shown in Equa-
tion 15, fusing all features by concat and then adding a softmax
classifier to get final classification results:

𝐶 = 𝑋𝑣 ⊕ 𝑋𝑎 ⊕ 𝑋𝑡 , (14)
𝑦 = softmax(R(𝐶 ×𝑊 + 𝑏)), (15)

where 𝑋𝑣 , 𝑋𝑎 and 𝑋𝑡 are sentiment-fused visual, audio and textual
features, ⊕ is a concat operation, R(·) is a relu activation operation,
𝑊 and 𝑏 are the weights and bias of the linear layer in the classifier.

However, there are great differences among features of differ-
ent modalities. The differences may become even more obvious
after fusing multimodal sentiment features. As a result, a late fu-
sion strategy is applied to merge multimodal classification results,
which are generated independently of each other. Since different
modalities have different effects on the SSR, after getting multi-
modal results from corresponding softmax classifiers, we multiply
the multimodal results and different modality weights 𝑘𝑖 to obtain
the final modal-weighted classification result as follows:

𝑦𝑖 = softmax(R(𝑋𝑖 ×𝑊𝑖 + 𝑏𝑖 )), 𝑖 ∈ {𝑣, 𝑎, 𝑡}, (16)
𝑦𝑐 = 𝑘𝑣𝑦𝑣 + 𝑘𝑎𝑦𝑎 + 𝑘𝑡𝑦𝑡 , (17)

where R(·) is a relu activation operation, 𝑋𝑖 are sentiment-fused
multimodal features,𝑊𝑖 and 𝑏𝑖 are weights and bias of the classifier
of each modality, 𝑣 , 𝑎 and 𝑡 refer to vision, audio and text modalities.
Early fusion and late fusion strategy are compared in the ablation
experiments, which can be seen in Section 4.2.

3.5 Loss Function
Due to SSR is a classification task, we apply cross entropy loss as
our basic loss function:

L = −
𝑛∑
𝑖=1

ℎ𝑖 log(𝑦𝑖 ), (18)

where 𝑛 is the number of categories, ℎ is one hot representation of
ground truth label of each sample and 𝑦 is the classification result,
which consists of the probability of each speaking style category.
When we apply late fusion strategy, we need to pay attention to
not only the combination result but also each single modality result.
The final loss is the sum of these results:

L̃ = L𝑐 + L𝑣 + L𝑎 + L𝑡 , (19)

where L𝑐 is calculated with the outputs of late fusion which fuses
multimodal results byweights,L𝑣 ,L𝑎 andL𝑡 are the losses that are
calculated with independent visual, audio and textual classification
results.

4 EXPERIMENTS
4.1 Dataset and Experimental Settings
Dataset. We conduct experiments on LVU [24] dataset, which con-
tains 1,339 movie clips in total, comprising 937 training videos,
203 validation videos, and 199 test videos. LVU [24] is proposed
to build comprehensive understanding of long-form videos from
various perspectives. There are nine tasks of LVU benchmark and
SSR is one of them. In this task, each movie clip lasts one to three
minutes and corresponds to one speaking style label. There are
five speaking style categories, namely Explain, Confront, Discuss,
Teach and Threaten. The distribution of different speaking styles
in training set is shown in Table 1. The amount of “teach” and
“threaten” samples is obviously smaller than others.

EvaluationMetrics. Similar to general classification tasks, Top-
1 Accuracy and F1-score are used as the evaluation metrics, which
are shortened to Acc and F1 in Table 3 and 5. Top-1 Accuracy
measures the accuracy of our model on speaking style classification,
which is calculated as the ratio of true predicted samples in all the
samples. F1-score measures the robustness of our model, which is
calculated as the formula below:

𝐹1 =
2 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 , (20)

where 𝑟𝑒𝑐𝑎𝑙𝑙 is the ratio of the number of true positive samples to
the number of all ground-truth samples and 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is the ratio of

Table 1: The quantitative distribution of different speaking
styles in LVU training set.

Speaking Style Quantity
Explain 260
Confront 215
Discuss 247
Teach 105

Threaten 110
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Table 2: Ablation results of recognizing speaking styles with
unimodal features vs. multimodal features on LVU dataset.
Here, V means video features, A means audio features, T
means textual features.

Method Top-1 Accuracy F1-score
V 27.3 16.6
A 32.3 28.5
T 45.5 41.6

V+A 31.3 18.9
V+T 42.4 36.2
A+T 46.5 41.6

V+A+T 50.0 44.1

the number of true positive samples to the number of all predicted
results.

Implementation Details. Since videos of LVU dataset are col-
lected from MovieClip [29], whose data source is YouTube, we
firstly cut the last 30 seconds of videos in advance to remove adver-
tisements.

The multimodal sentiment recognition model we used, SelfMM,
is pretrained on MOSI [31] dataset for 8 iterations. The pretrained
BERT we used is of 12-layers, 768-hidden and 12-heads. There are 5
layers in cross-attention encoder and each layer contains 5 attention
heads.

In the training stage, we adopt Adam optimizer with initial learn-
ing rate 0.001. Themodel is trained for 100 iterations on LVU dataset
and the batch size is 16. All experiments are implemented using
Pytorch on one GPU of RTX 3090.

4.2 Ablation Study
To verify the effectiveness of multimodal information on SSR, we
conduct comparative study on multimodal features and unimodal
features. We also compare the performance of using early fusion
and late fusion strategy to integrate multimodal features, since
multimodal fusion is a great challenge for multimodal methods.

To evaluate the effectiveness of introducing the influence of sen-
timents, we compare the recognition results of applying sentiment-
fused features and those without sentiment features. Moreover, to
explore appropriate sentiment-fusion strategies, we experiment on
two sentiment-fusion strategies. One is to fuse them by a cross-
attention encoder and the other one is to conduct a direct dot
product on multimodal features and their corresponding sentiment
features.

By default, we apply cross-attention encoder as sentiment fu-
sion strategy and use weighted late fusion strategy as multimodal
fusion strategy because this combination can achieve the best per-
formance.

Multimodal Features. In Table 2, the performance of only us-
ing visual features is the worst. The reason is that it is hard for
the model to converge when we only use visual features which are
highly complex. Audio and text are easier to be understood because
they contain more clear and intensive information.

When we fuse visual and audio features or fuse visual and textual
features, the performances are better than those of the methods that
only using visual features. When we fuse audio and textual features,
the combination performs better than that only using audio features.
The performance of the varient that fuses visual, audio and textual
features performs best, which is superior to all combinations. The
results of these varients demonstrate that multimodal information
can complement each other, which improves the performance on
SSR.

We also think that subtitles are essential when understanding
long-form videos, considering that varients including textual fea-
tures generate desired results. It is noted that the varient fusing
visual and textual features performs worse than that of only textual
features, we think it is because the differences between visual and
textual features bring in noise when a direct concat is conducted to
fuse them.

Sentiment Fusion. As shown in Table 3, the performances of
both unimodal and multimodal varients are improved after fusing
corresponding sentiment features, indicating that the introduction
of sentiments is effective. It also proves that sentiments are in-
deed correlated with speaking styles and can enhance the feature
expressions to recognize speaking styles.

When more modalities are used, the performance is improved
more after multimodal features are fused with sentiments. It proves
that sentiment-fusion is appropriate for multimodal architecture.

Multimodal Fusion Strategies. It can be seen from the line 1
and 3 of Table 4 that when we use multimodal features without
fusing sentiment features, early fusion is better than late fusion
in almost all varients. We introduce late fusion because we think
that multimodal features are different from each other and direct
concat will bring noise to different features. When we fuse features
of two or three modalities with by concat, the noise seems not that
serious.

However, from the line 2 of Table 4, we can see that the influence
is clear when we fuse sentiment features to multimodal features.
The noise is too large for model to converge, and it can be explained
as this is because the number of features fusing sentiments is twice

Table 3: Ablation results of recognizing speaking styles with vs.without sentiment features on LVU dataset. Here, V represents
visual features, A represents audio features, T represents textual features; w/ and w/o sentiment means if fusing multimodal
and sentiment features or not.

Method V A T V+A V+T A+T V+A+T
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

w/o sentiment 26.8 11.3 31.3 29.1 43.4 36.1 28.8 23.6 40.9 36.1 37.4 31.5 41.4 37.1
w/ sentiment 27.3 16.6 32.3 28.5 45.5 41.6 31.3 18.9 42.4 36.2 46.5 41.6 50.0 44.1
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Table 4: Ablation results of fusing multimodal results by early fusion vs. late fusion strategy to recognize speaking styles of
LVU dataset. Here, V means visual features, A means audio features, T means textual features; early fusion means fusing
multimodal features by concat directly and late fusion means conducting a weighted average of multimodal results; w/ and
w/o sentiment means if fusing multimodal and sentiment features or not.

Method Top-1 Accuracy F1-score
V+A V+T A+T V+A+T V+A V+T A+T V+A+T

early fusion w/o sentiment 37.9 43.4 39.9 44.9 34.8 37.1 30.2 44.2
w/ sentiment 29.3 29.3 26.8 26.8 13.3 13.3 11.3 11.3

late fusion w/o sentiment 28.8 40.9 37.4 41.4 23.6 36.1 31.5 37.1
w/ sentiment 31.3 42.4 46.5 50.0 18.9 36.2 41.6 44.1

Table 5: Ablation results of fusing sentiments by Dot Product vs.Cross-Attention Encoder to recognize speaking styles on LVU
dataset. Here, V means visual features, A means audio features, T means textual features.

Method V A T V+A V+T A+T V+A+T
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Dot Product 26.8 11.3 29.8 24.9 41.9 38.0 34.8 31.3 43.4 38.1 40.4 36.4 39.4 30.7
Cross-Attention Encoder 27.3 16.6 32.3 28.5 45.5 41.6 31.3 18.9 42.4 36.2 46.5 41.6 50.0 44.1

of that without sentiments. When dealing with more data sources,
the differences among different modalities will be larger and the
noise will be enhanced.

As we expected, the line 4 of Table 4 shows that late fusion
can reduce negative effects of large differences among multimodal
features fused with sentiments. When we fuse more modalities, the
advantage of late fusion is more obvious. The best performance is
achieved when we apply late fusion strategy to integrate sentiment-
fused visual, audio and textual features.

Sentiment Fusion Strategies. It can be seen in Table 5 that, for
most unimodal and multimodal varients, cross-attention encoder
performs better than dot product on fusing multimodal features and
sentiment features. This proves that the multi-head cross-attention
layer is effective in terms of introducing the influence of sentiments,
which is helpful to recognize speaking styles.

However, dot product does well in some varients that include
visual features, due to the high complexity of visual features and
the plain processing of visual features. As a result, the differences
between visual and other features are not enhanced, which leads
to less negative influence of feature fusion.

4.3 Comparison with the SOTA
To prove the effectiveness of MMSF, we compare it with the typical
video analysis methods. Due to SSR is an up-to-date task proposed
by LVU [24], there are few methods targeted at it. As a result,
except for SOTA methods on SSR, we add a lot of outstanding video
classification methods for comparison. As shown in Table 6, Object
Transformer [24], ViS4mer [15] and STAN [9] are designed for LVU
tasks while SlowFast [8], VideoBERT [22], MulT [23], VIVIT[2],
MMIM [11], Swin Transformer [17] and MeMViT [25] are video
classification models, and the performance of MMSF is superior to
all of them on SSR.

We use seven as baselines, namely SlowFast [8], VIVIT[2], Object
Transformer [24], Swin Transformer [17], ViS4mer [15], STAN [9]

Table 6: Comparison results of ourmethod vs.different state-
of-the-art methods on LVU dataset.

Method Top-1 Accuracy F1-score
SlowFast [8] 35.8 23.79

VideoBERT [22] 37.9 -
MulT [23] 38.9 32.2
VIVIT [2] 28.14 23.69
MMIM [11] 32.8 24.2

Object Transformer [24] 38.4 38.2
Swin Transformer [17] 32.16 31.19

ViS4mer [15] 40.8 -
STAN [9] 41.41 -

MeMViT [25] 34.67 35.06
MMSF (Ours) 50.0 44.1

and MeMViT [25]. All of them only takes visual information into
consideration. MMSF is obviously superior in both Top-1 Accuracy
and F1-score, which is due to its integrated utilization of various
information ofmovie clips. Even of different speaking styles, conver-
sations are often visually similar. In such cases, audio and text con-
tain more helpful information that enables us to recognize targeted
speaking styles. The influence of applying multimodal features can
also be seen in the aforementioned ablation experiment.

The other reason that MMSF achieves the best performance is
the introduction of sentiment. Among all the baselines, MulT [23],
VideoBERT [22] andMMIM [11] aremultimodal methods. Although
they have utilized multimodal information to facilitate video under-
standing, the performances of these methods are still worse than
MMSF. For one thing, sentiments, which consist an important part
of MMSF, have strong impacts on SSR. For another, it is challenging
to fuse multimodal features as the mutual influences of different
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Figure 6: Qualitative comparisons of speaking style recognition results using different methods on LVU dataset. Here, the left
part of each example are the frames of one movie clip; the right part of each example are the speaking styles of the movie clip
predicted by different methods; results in green color represent correct predictions while those in red color represent wrong
ones.

modalities are required to be balanced with a specific multimodal
fusion strategy.

In addition, among all the baselines, Object Transformer [24],
ViS4mer [15] and STAN [9] are aimed at LVU tasks. Although they
achieve excellent performances compared to other methods, they
are still far worse than MMSF on SSR. These pretrained visual
feature extractors can be applied to a variety of downstream tasks,
but may not work for all the video understanding tasks, especially
for those of quite different types. To handle with specific tasks like
SSR, it is necessary to designmore specificmethods. Because sounds
and subtitles are important parts of human conversations, MMSF
focuses on not only visual but also audio and textual information
of videos. Moreover, as sentiments are one of the motivations of
human behaviors, MMSF takes sentiment fusion as a part of pipeline.
It is these designs that enable MMSF to recognize speaking styles
more effectively.

Figure 6 shows qualitative results of the proposed MMSF on LVU
dataset. We can see that MMSF can distinguish different speaking
styles well while other methods tend to confuse among different
speaking styles. Videos of explain, confront and discuss visually
seem similar, and thereby they are prone to be mistaken for each
other.

When the label of video is “teach” or “threaten”, it is hard to be
recognized. For one thing, the unbalanced data distribution limits
the ability of MMSF to give correct predictions about these two
categories. For another, “teach” often involves multi-person con-
versation, while other speaking styles tend to describe one-to-one
conversations. Despite the limited training samples of “threaten”,

MMSF can distinguish “threaten” from other speaking styles ow-
ing to its comprehensive analysis of sentiment information, which
enhances feature expressions and magnifies the differences among
different speaking styles.

5 CONCLUSION
In this paper, we proposed a multimodal sentiment-fused method,
MMSF, to recognize speaking styles. By extracting visual, audio and
textual features by multiple processing steps and integrating these
features with a weighted late fusion strategy, MMSF made full use
of multimodal information of human conversations to analyze the
speaking styles of them. With the help of cross-attention encoder,
the effects of sentiments were introduced to multimodal features,
which enhanced the ability of MMSF to understand human con-
versations. To evaluate the effectiveness of MMSF, we conducted
extensive experiments on LVU dataset. The experimental results
showed that our method significantly outperforms the state-of-the-
art methods and confirmed the effectiveness of applyingmultimodal
features and sentiments.
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