
Reproducibility Companion Paper: Human Object Interaction
Detection via Multi-level Conditioned Network

Yunqing He
State Key Laboratory for Novel
Software Technology, Nanjing

University
Nanjing, China

heyq@smail.nju.edu.cn

Hui Jiang
State Key Laboratory for Novel
Software Technology, Nanjing

University
Nanjing, China

huijiang@smail.nju.edu.cn

Tongwei Ren∗
State Key Laboratory for Novel
Software Technology, Nanjing

University
Nanjing, China

rentw@nju.edu.cn

Maria Sinziiana Astefanoaei†
Data-intensive Systems and
Applications, IT University of

Copenhagen
Copenhagen, Denmark

msia@itu.dk

Xu Sun
State Key Laboratory for Novel 
Software Technology, Nanjing 

University
Nanjing, China

sunx@smail.nju.edu.cn

Gangshan Wu
State Key Laboratory for Novel 
Software Technology, Nanjing 

University
Nanjing, China
gswu@nju.edu.cn

Andreas Leibetseder†

Institute of Information Technology, 
Klagenfurt University
Klagenfurt, Austria
aleibets@itec.aau.at

ABSTRACT
To support the replication of “Human Object Interaction Detection
via Multi-level Conditioned Network”, which was presented at
ICMR’20, this companion paper provides the details of the artifacts.
Human Object Interaction Detection (HOID) aims to recognize
fine-grained object-specific human actions, which demands the
capabilities of both visual perception and reasoning. In this paper,
we explain the file structure of the source code and publish the
details of our experiments settings. We also provide a program for
component analysis to assist other researchers with experiments
on alternative models that are not included in our experiments.
Moreover, we provide a demo program for facilitating the use of
our model.

CCS CONCEPTS

• Computing methodologies → Activity recognition and un-
derstanding.

KEYWORDS
Human object interaction detection, conditioned network, mul-
tilevel visual representation, multimodal feature fusion, feature
transformation

∗Corresponding Author.
†Reproducibility Reviewers.

1 ARTIFACTS DESCRIPTION
1.1 Introduction
In our original paper [10], we proposed a novel multi-level condi-
tioned network (MLCNet) that fuses extra spatial-semantic knowl-
edge with visual features to enhance the reasoning capability of
human object interaction detection (HOID) [9]. Specifically, we
constructed a multi-branch CNN as the backbone for multi-level
visual representation. We then encoded extra knowledge including
human body structure and object context to dynamically influence
the feature extraction of CNN by affine transformation and atten-
tion mechanism [11]. Finally, we fused the modulated multimodal
features to distinguish the interactions. We trained and evaluated
our method on HICO-DET dataset [1] and V-COCO dataset [5]. The
artifacts include the source code of the MLCNet model, which is
available at https://github.com/fraliphsoft/HOI-det.

1.2 Source Code Structure
The file structure of the source code is shown in Figure 1. Consid-
ering that there are mass of dependency files in our project, e.g.,
pycocotools, only the important files that we modified or neces-
sary for code running are listed here. Our work is based on the
pytorch implementation of Faster R-CNN [8, 12] at https://github.
com/jwyang/faster-rcnn.pytorch and a recently proposed HOID
method TIN [6] at https://github.com/DirtyHarryLYL/Transferable-
Interactiveness-Network. We use WSHP [3] at https://github.com/
MVIG-SJTU/WSHP to locate human body part regions.
data: containing HICO-DET dataset and V-COCO dataset.
eval_hico: a toolkit for evaluation on HICO-DET dataset.
eval_vcoco: a toolkit for evaluation on the V-COCO dataset.
lib\dataset\hico2.py: pre-processing data from HICO-DET.

https://github.com/fraliphsoft/HOI-det
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network
https://github.com/DirtyHarryLYL/Transferable-Interactiveness-Network
https://github.com/MVIG-SJTU/WSHP
https://github.com/MVIG-SJTU/WSHP


Figure 1: File structure.

lib\dataset\vcoco.py: pre-processing data from V-COCO.
lib\model\faster_rcnn\faster_rcnn.py: working as the main
file to define the structure of our model.
lib\model\faster_rcnn\resnet.py: containing the backbone of
our model.
lib\model\faster_rcnn\SFT_layer.py: working as the main file
for the feature transform block.
lib\roi_data_layer\pose_map.py: generating body part mas-ks
as input for phrase and spatial branch in our method.
lib\roi_data_layer\spatial_map.py: generating spatial feature
as input for phrase and spatial branch in our method.
lib\roi_data_layer\roibatchLoader.py:working as the data loader
for two datasets.
weights: containing pretrained models in HICO-DET data-set and
V-COCO dataset, respectively.
WSHP\parsing_network\generate_flist.sh: generating filenames
list from datasets.
WSHP\parsing_network\inference.py: generating human body
part regions from datasets.
WSHP\models: containing pretrained models of WSHP.
test_net_hico.py: working as the main file to predict and evaluate
results on the basis of our model in HICO-DET.
test_net_vcoco.py:working as themain file to predict and evaluate
results on the basis of our model in V-COCO.
trainval_net.py: working as the main file to train our model.
demo_vcoco.py: working as a demo program in V-COCO.

2 EXPERIMENTS
2.1 Datasets
We use the same datasets as in our original paper, and also the same
training and test splits. Here, we describe the two datasets in turn.

HICO-DET is constructed by augmenting HICO dataset [2] with
instance annotations. It includes 47,776 images (38,118 for training
and 9,658 for testing) with 80 object and 117 action categories that
form 600 HOI categories. Over 150K HOI instances are provided by
HICO-DET.

V-COCO is constructed by augmenting a subset of MS-COCO
dataset [7] with interaction category annotations. It includes 10,346
images (2,533 for training and 2,867 for validation and 4,946 for test-
ing) with 26 HOI categories. Over 16K HOI instances are provided
by V-COCO.

2.2 Experiments Settings
We conduct our experiments in the following environment:

(1) Ubuntu 16.04 LTS with CPU i7-5930K, GPU GTX 1080 Ti,
32GB memory and 500GB free space.

(2) CUDA 8.0 and cuDNN 6.0.21.
(3) Python 2.7 with opencv-python=4.2.0.32, numpy=1. 16.6,

torch=0.4.0, tensorboardX=2.0, tensorflow=1.1.0, matplotlib=2.2.5,
scipy=1.2.3, easydict=1.9, Pillow=6.2.2.

(4) Matlab R2017a.
For the support of the latest runtime environment, we also re-

produce our experiments in a renewed branch, which requires the
following environment:

(1) Ubuntu 16.04 LTS with CPU Intel(R) Xeon(R) E5-2680 v4
@ 2.40GHz, GPU GeForce RTX 3090 @ 24GB, 64GB memory and
500GB free space.

(2) CUDA 11.1 and cuDNN 8.0.5.
(3) Python 3.8 with opencv-python=4.5.5.62, numpy=1. 21.5,

torch=1.9.0, tensorboardX=2.4, tensorflow=2.6.0, matplotlib=3.5.1,
scipy=1.6.2, easydict=1.9, Pillow=8.4.0.

(4) Matlab R2017a.
Our source code is composed of python. For fair comparison, we

follow the same code as in iCAN [4] and TIN [6], instead of mak-
ing new implementation of the original evaluation metrics. In this
case, Matlab runtime environment is needed. The inherited evalua-
tion functions are stored in ‘eval_hico’ and ‘eval_vcoco’ directories
respectively.

2.3 Quick Start
We provide a demo program to facilitate the practice of our method.
As shown in Figure 2, the visualization results can be obtained by
running the following script:

python demo_vcoco.py
The ‘–im_id’ parameter is also customized to choose an image and
the ‘–show_category’ parameter is used to decide whether to show
interaction and object categories or not.

2.4 Test and Evaluation
The “test_net_hico.py" and “test_net_vcoco.py" file can be imple-
mented with the following script to evaluate the performance of
our model:



Table 1: Important parameters that can be customized.

Parameter Description Default Value
dataset choose the dataset to use.(“hico_full" or “vcoco_full") “vcoco_full"
net choose the backbone to use.(“res101" or “vgg16") “res101"
start_epoch number of start epoch. 1
epochs number of epochs to train. 6
disp_interval number of iterations to display. 100
save_dir directory to save models. weights
mGPUs whether to use multiple GPUs. False
bs batch_size. 1
o training optimizer. sgd
lr starting learning rate. 0.00001
lr_decay_step step to do learning rate decay, unit is epoch. 1
lr_decay_gamma learning rate decay ratio. 0.1
r resume checkpoint or not. False
checksession checksession to load model. 1
checkepoch checkepoch to load model. 6
checkpoint checkpoint to load model. 91451
use_tfb whether use tensorboard. True

Figure 2: An example of the visualization result.

python test_net_hico.py
or

python test_net_vcoco.py
In order to reduce the time in evaluation, once the inference finished,
the test results will be saved to ‘output’ directory. We also provide
our pre-computed test results with links by the README.md file
in our code.

The evaluation results will be saved to a text file. For HICO-DET
dataset, the file is ‘./output/hico_full/eval_result.txt’. For V-COCO
dataset, the file is ‘./output/vcoco_full/all_hoi_detections_eval.txt’,
and the ‘role mAP’ metric illustrated in original paper is shown
in the last text line. Following the settings from previous work,
we select role mAP in Scenario 2 as the comparable result. It is
notable that the experiment results in V-COCO dataset generated
by our provided pretrained model are slightly higher than those in

the original paper, while we did nothing but simply increase some
training epochs.

2.5 Training for Replication
The model parameters defined in the “trainval.py” file can be ad-
justed for custom training, and some important parameters as well
as their description are shown in Table 1, and most of them are in-
herited from Faster-RCNN. To repeat our training progress, please
run:

python trainval_net.py dataset hico_full check-
epoch 6 –checkpoint 91451

or

python trainval_net.py dataset vcoco_full check-
epoch 18 –checkpoint 10051

It takes about 3 days and 1 day for training on HICO-DET dataset
and V-COCO dataset respectively.

There are two backbone networks available for ourmodel, VGG16
and ResNet101. In our experiments, we decide ResNet101 as our
backbone network and initialize the parameters with a pretrained
ResNet101 model before training. Both pretrained ResNet101 model
and VGG16 model are provided with links in the README.md file
in our code.

3 REPRODUCIBILITY EFFORTS
In the replication, we reorganize and clean up the code files, and
clarify every file that is working in our method. In the clean-up
process, about 125 code and dependencies files that are not nec-
essary for code running are removed or simplified. We re-analyze
the complete process from the original data to the final results to
integrate them into a fine-designed code warehouse. The refactored
code can be accessed on github with a pipeline of operating manual.
We clean out the running environments and dependencies to reduce
the installation costs. We upgrade the codebase dependencies for



the support of the latest runtime environment. Finally, we provide
a demo program to visualize our test results.

4 REVIEWING PROCESS
As indicated above, two external reviewers audited the published
work in terms of reproducibility. This process was conducted in
periodic communication and consultation with the main authors.
As the tools utilized for the original research were rather outdated,
the review focused on ensuring better compatibility with more
modern hardware. The authors accomplished this elegantly by
creating a new repository branch pytorch1.x, which supports
recent versions of implementation-critical Python libraries such as
PyTorch and Tensorflow. Moreover, the required library versions
are obtainable using the conda package manager of the Anaconda
Python distribution.

During the review, several problems arose, mostly concerning
the setup of the training and testing environment. In particular, the
biggest issue was the dependency on Matlab causing unpredictable
complications on different operating systems. Ultimately, this led
to using a Linux (Ubuntu 18.04) machine, as recommended by the
authors. After a successful setup, the training process for both
datasets—HICO and VCOCO—took several days on a workstation
with the following hardware specs: Intel Core i7-6800K CPU @
3.40GHz × 6, 64 GiB DDR4 @ 2666 MHz, Nvidia GeForce RTX 3090.

In summary, all original research experiments can approximately
be recreated and the work can thus be rated as reproducible. We
further commend the authors for quickly tending to all emerging
problems as well as providing extensive explanations and solutions.

5 CONCLUSION
In this paper, we provided the details of the artifacts of the paper
“Human Object Interaction Detection via Multi-level Conditioned

Network”. The artifacts contain the source code for experiments in
the paper. Taking advantage of the source code, the experiments
can be operated and customized.

ACKNOWLEDGMENTS
This work is supported by National Science Foundation of China
(62072232), Natural Science Foundation of Jiangsu Province (BK2019
1248) and Collaborative Innovation Center of Novel Software Tech-
nology and Industrialization.

REFERENCES
[1] Yu-Wei. Chao, Yunfan. Liu, Xieyang. Liu, Huayi. Zeng, and Jia. Deng. 2018. Learn-

ing to Detect Human-Object Interactions. In WACV.
[2] Yu-Wei Chao, Zhan Wang, Yugeng He, Jiaxuan Wang, and Jia Deng. 2015. HICO:

A Benchmark for Recognizing Human-Object Interactions in Images. In ICCV.
[3] Hao-Shu Fang, Guansong Lu, Xiaolin Fang, Jianwen Xie, Yu-Wing Tai, and Cewu

Lu. 2018. Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided
Knowledge Transfer. In CVPR.

[4] Chen Gao, Yuliang Zou, and Jia-Bin Huang. 2018. iCAN: Instance-Centric Atten-
tion Network for Human-Object Interaction Detection. In BMVC.

[5] Saurabh Gupta and Jitendra Malik. 2015. Visual Semantic Role Labeling. CoRR
(2015).

[6] Yong-Lu Li, Siyuan Zhou, Xijie Huang, Liang Xu, Ze Ma, Hao-Shu Fang, Yanfeng
Wang, and Cewu Lu. 2019. Transferable Interactiveness Knowledge for Human-
Object Interaction Detection. In CVPR.

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common
Objects in Context. In ECCV.

[8] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. InNeurIPS.

[9] Xu Sun, Yunqing He, Tongwei Ren, and Gangshan Wu. 2021. Spatial-Temporal
Human-Object Interaction Detection. In ICME.

[10] Xu Sun, Xinwen Hu, Tongwei Ren, and Gangshan Wu. 2020. Human Object
Interaction Detection via Multi-Level Conditioned Network. In ICMR.

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NeurIPS (2017).

[12] Jianwei Yang, Jiasen Lu, Dhruv Batra, and Devi Parikh. 2017. A Faster Pytorch
Implementation of Faster R-CNN. https://github.com/jwyang/faster-rcnn.pytorch
(2017).

https://github.com/fraliphsoft/HOI-det/tree/pytorch1.x
https://pytorch.org/
https://www.tensorflow.org/
https://conda.io/
https://www.anaconda.com/
https://www.mathworks.com/products/matlab.html
https://ubuntu.com/blog/tag/ubuntu-18-04

	Abstract
	1 Artifacts Description
	1.1 Introduction
	1.2 Source Code Structure

	2 Experiments
	2.1 Datasets
	2.2 Experiments Settings
	2.3 Quick Start
	2.4 Test and Evaluation
	2.5 Training for Replication

	3 Reproducibility Efforts
	4 Reviewing Process
	5 Conclusion
	Acknowledgments
	References

