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ABSTRACT
As one of the essential problems in scene understanding, human
object interaction detection (HOID) aims to recognize fine-grained
object-specific human actions, which demands the capabilities of
both visual perception and reasoning. Existing methods based
on convolutional neural network (CNN) utilize diverse visual
features for HOID, which are insufficient for complex human object
interaction understanding. To enhance the reasoning capablity
of CNN, we propose a novel multi-level conditioned network
that fuses extra spatial-semantic knowledge with visual features.
Specifically, we construct a multi-branch CNN as backbone for
multi-level visual representation. We then encode extra knowledge
including human body structure and object context as condition
to dynamically influence the feature extraction of CNN by affine
transformation and attention mechanism. Finally, we fuse the
modulated multimodal features to distinguish the interactions.
The proposed method is evaluated on two most frequently-used
benchmarks, HICO-DET and V-COCO. The experiment results
show that our method is superior to the state-of-the-arts.
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1 INTRODUCTION
Human object interaction detection (HOID) aims to localize and
classify human-object pairs and their interactions [1], which can
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action recognition

<jump>

HOID

<look skateboard>

<jump skateboard>

<ride skateboard>

HCVRD
<human, in front of, plant>

< human, in front of, wall>

< human, above, ground>

<human, jump, skateboard>

Figure 1: Comparison of action recognition, HCVRD and
HOID. The bounding boxes indicate the locations of the
human and interested objects. The labels under the images
are the recognition results required by corresponding tasks.
The colors indicate the consistence between the labels and
bounding boxes.

be utilized in numerous multimedia applications such as image
captioning [14, 22, 28] and retrieval [19, 30, 36]. In some cases,
action recognition [42] and human-centric visual relation detection
(HCVRD) [55] are considered similar to HOID, but they have
substantial differences. Action recognition mainly concentrates on
classifying the actions of individual human instances in images [13]
or video clips [23, 42, 47] without considering the interacted objects,
which is insufficient to describe complex visual scenes in real world.
Compared with it, HOID provides more specific and comprehensive
description of human activity with object context. As shown in
Figure 1, action recognition only captures the human action—jump,
while HOID describes how the human interacts with the skateboard
in detail. HCVRD concentrates on holistic visual scene, including
both interactions and geometrical relations between humans and
all the objects in image [55]. Compared with HCVRD, for one thing,
HOID focuses on comprehensive and fine-grained interactions,
which requires deep understanding of human body structure;
for another, HOID ignores the uninformative relations involving
objects in background, which can be distinguished with some
straightforward visual cues like relative location. As illustrated in
Figure 1, HCVRD attempts to capture all the relations between the
human and the objects including wall, ground, plant and skateboard.
However, HOID only concentrates on the fine-grained and salient
interactions between the individual and the skateboard, ignoring
the uninformative relation instances.
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As a challenging task, HOID aims to capture high level semantic
information beyond individual entities from complex visual scene.
To be specific, the visual patterns within the same human object
interaction (HOI) category can be quite distinct because of different
human object instances and context. Moreover, since many interac-
tions involve subtle motions of certain body parts, the appearance
deviation among different categories can be minor. Following
the strategy of object detection framework, early solutions [1,
39] intuitively combined the entity-level visual features [21] of
human-object pairs extracted by convolutional neural network
(CNN) for interaction classification. To make CNN focus on more
informative regions of image, some methods apply visual attention
mechanism [10] or supplement CNN features extracted from the
regions around human body joints [43]. Although several existing
works have made some progress in HOID, they may remain
some defects. First of all, pure CNN feature can be insufficient
to bridge the gap between low-level visual information of pixels
and high-level semantic information of HOI. Recently-proposed
methods, RPNN [54] and PMFNet [43], crop multi-level CNN
features according to the bounding boxes of detected entities and
human body parts to capture detailed visual cues. Although the
prior location information is utilized, the CNN features are still
sourced from image only. Besides, most of the existing HOID
methods [16, 43, 54] use frozen CNN backbone pretrained on an
object detection dataset to extract visual features for HOI reasoning.
The appearance distributions of interaction phrase (union region of
human-object pair) and single object are significantly biased, which
are supposed to be learned independently.

Based on these observations, we propose a novel HOID method,
a multi-level conditioned network (MLCNet) which aims to fuse
extra explicit knowledge with multi-level visual feature. Specifi-
cally, we construct a multi-branch CNN structure as backbone to
generate multi-level visual representation. To extract features of
diverse visual content including global scene, interaction phrase,
entities and human body parts, different branches are optimized
independently. In this way, the appearance bias of different visual
content can be effectively learned. However, the pure visual features
are insufficient to understand complex semantics of HOI. Inspired
by [45], we utilize extra spatial-semantic information of human
body structure and object context as guidance to enhance the
reasoning capability of CNN by dynamically influencing the feature
extraction procedure. To obtain the comprehensive information
of human body structure, we apply human parsing and pose
estimation models to localize the body parts and joints respectively.
The estimated body part segmentation map and body-object spatial
configuration map are encoded with condition network and fed
into feature transform layers to generate modulate parameters,
which alternate the visual features at different levels by affine
transformation.

Another informative cue we exploit is object context [4]. Intu-
itively, certain object category relates to certain body parts. For
example, “bike” is often associated with “leg” and “hip”, while “book”
is often related to “head” and “arm”. Moreover, different objects with
similar function probably involve the same interactions, such as
⟨ride, bicycle⟩ and ⟨ride, motorcycle⟩. To explore these correlations,
we use word vectors pretrained on large-scale linguistic dataset
as object context features to represent object categories and

generate attention weights for different body parts, which implicitly
encode the functional similarity among different objects, thereby
facilitating the transfer of interaction knowledge. We also add
an context branch taking object category vectors as input to
supplement the visual branches.

We evaluated the proposed MLCNet on two most frequently-
used benchmarks, HICO-DET [1] and V-COCO [15]. The experi-
ment results show that our method outperforms the state-of-the-art
methods and component analysis confirms the effectiveness of the
combination of multi-level CNN features and explicit knowledge.
Compared with pure visual models, our method achieves better
performance and interpretability.

2 RELATEDWORK
2.1 Human Object Interaction Detection
HOID task was firstly formulated by Chao et al. [1]. They proposed
evaluation metrics and the first large-scale HOID dataset, HICO-
DET, which is currently used as a public benchmark. They also
developed a multi-stream architecture named HO-RCNN, to aggre-
gate entity appearance and spatial configuration information for
HOI reasoning. Gao et al. improved the performance of HO-RCNN
model with instance-centric attention module [10]. Gkioxari et
al. proposed a novel multi-task model to simultaneously localize
interacted object and recognize HOI under the guidance of human
appearance [12]. Recently, Gupta et al. proposed a light-weight
model and achieved impressive performance with proper feature
factorization as well as several training techniques [16]. Wang et
al. proposed a contextual attention framework, which adaptively
selected relevant instance-centric context information to highlight
informative regions of image [44]. Zhao et al. developed a graph-
based network named RPNN to reason HOI by passing message
through an object-body graph and a human-body graph [54].
Wan et al. designed a pose-aware multi-feature network, PMFNet,
combining ROI-aligned CNN features in different levels, which
achieved state-of-the-art performance [43].

Different from the existing methods that employ standard CNN
features, MLCNet dynamically alternates the feature extraction
with extra spatial-semantic knowledge as guidance and outperforms
the state-of-the-art methods.

2.2 Human-Centric Visual Relation Detection
Visual relation detection (VRD) aims at detecting object pairs
and their relations in terms of space, comparison, interaction
and possession for image [29, 41, 50, 51] and video [35, 38, 40].
Lu et al. formulated VRD task on still image for the first time and
proposed a multi-modal VRD method, combining language priors
and deep visual feature [29]. Shang et al. proposed the first video
VRD framework with the capability of temporally localizing and
recognizing dynamic relations [38]. HCVRD [49, 55] concentrates
on capturing the human-centric relations of which the subjects
are restricted to human instances and is more related to real
world application scenarios such as social media analysis [5, 11].
Zhuang et al. constructed a large-scale HCVRD dataset for still
image and proposed a web-supervised baseline method [55]. Yu et
al. developed a image HCVRD model using Mask-RCNN and
VTransE [49], which obtained desirable results. Recently, Shang et
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Figure 2: An overview of the proposed MLCNet. Here, FTBlock, ResBlock, Conv and FC are abbreviations of feature
transform block, residual block, convolution layer and fully-connected classifier. ⊕ and ⊗ denote addition and element-wise
multiplication. Zoom in for better view.

al. constructed a large-scale human-centric dataset, VidOR, for
video VRD evaluation [37], on which Sun et al. proposed a video
relation model with multi-model feature fusion and achieved state-
of-the-art performance [40].

Instead of predicting general human-centric relations, HOID
focuses on dynamic human object interactions that are more
informative and fine-grained. It requires deep understanding of
human action and body structure.

2.3 Conditioned Network
Multimodal information fusion is a critical problem of high-level
semantic understanding tasks such as visual dialog [6] and visual
question answering (VQA) [32]. To dynamically influence the
focus of CNN with questions in VQA, Perez et al. proposed a
feature-wise linear modulation layer, which took language feature
as condition and transformed visual feature [33]. This structure
effectively enhanced the reasoning capability of standard CNN.
Besides, some image synthesis tasks such as style transfer [48, 52]
and super resolution [45] also rely on external semantic guidance.
In general, these works made an attempt to render different regions
of image based on a segmentation map that contains both semantic
and spatial information. Wang et al. proposed a spatial feature
transform (SFT) layer for semantic super resolution [45]. This model
encoded the probability map generated by semantic segmentation
model as condition and modulated the visual feature of original
image with the SFT layers. In this way, the realistic texture could
be recovered under the guidance of spatial-semantic condition.
Inspired by these works, the proposed HOID method exploits extra
knowledge provided by visual perceptual models to improve the
reasoning capability of CNN, attempting to fill the gap between
visual feature and high-level semantics.

3 METHOD
Given an image I , we apply some off-the-shelf visual perceptual
models to extract extra spatial-semantic knowledgeK . It is fed into

the proposed MCLNet D(·) together with I to enhance the HOI
reasoning capability of CNN:

Ψ = D(I |K), (1)

where Ψ is referred to the detected HOI instances {(bh,bo,σ )},
in which bh and bo are the bounding boxes of detected human
and object, and σ belongs to the HOI category set. An HOI
category σ involves an action ωσ and an object ασ , which belong
to corresponding action and object category sets respectively. In
the following sections, we start with the preparation for the extra
knowledge we exploit. Then we introduce how to fuse multi-level
visual features and extra spatial-semantic information by network
conditioning in detail.

3.1 Extra Knowledge Extraction
Object detection. For an image I , we apply a state-of-the-art object
detection model , FPN [26], to obtain the locations and categories
of humans and objects. Detected human and object instances are
referred to as bh and (bo,α) respectively. The human and object
instances are paired as HOI candidates, Θ={(bh,bo,α)}. The object
categories are represented with a set of high-dimensional word
vectors v ∈ RLv pretrained on large-scale linguistic dataset.

Pose estimation. To obtain the structure information of human
body, we adopt an off-the-shelf multi-person pose estimation
method, RMPE [9], which estimates Nk body joints for each
human instance. Each body joint is expressed as a coordinate with
confidence value.

Humanparsing.Weutilize a pretrained human parsingmethod,
WSHP [8], to generate body part segmentation map Φ, a multi-
channel probability map with the same width and height as the
original image, each channel of which corresponds to a certain
type of body parts. Compared with body joints, this semantic
segmentation map provides denser structure information in pixel
level including the shapes and edges of human body parts.



Although recent attempts on HOID also exploit object detection
and pose estimation, most of them only use the obtained bounding
boxes of entities and human body joints to crop CNN feature.
Different from the existing methods, MLCNet comprehensively
exploits the semantic information, global spatial distribution and
relations among body parts and object for HOI reasoning. Serving
as a bridge between pure visual feature and complicated seman-
tics, these explicit knowledge contributes to improving both the
reasoning capability and interpretability of deep network.

3.2 Multi-level Visual Features
Multi-level visual representation aims to encode both coarse
and fine-grained visual information, which is essential for HOID.
However, most existing methods utilize a shared CNN backbone
to extract different visual features for HOI reasoning [16, 43, 54],
which cannot capture the appearance distribution bias of different
visual content.

To solve this problem, we construct a multi-branch CNN as the
backbone of MLCNet. The proposed network structure encodes
comprehensive visual information of global context, interaction
phrase, entities and body parts with corresponding branches, which
are independently optimized and can efficiently learn different
appearance distributions in the training stage. Specifically, we
first generate globally conditioned feature fд for the entire image
with a sequence of shared residual blocks and feature transform
blocks, from BaseBlock to FTBlock4, as shown in Figure 2. The
BaseBlock and ResBlocks are standard modules of ResNet. The
feature transform blocks fuse human body structure information
with global visual features, which is introduced in Section 3.3
in detail. Based on this, we extract multi-level visual features
including fu , fh , fo and fp by cropping fд according to the regions
of interaction phrase, human, object and body parts respectively
and passing them into corresponding branches. These branches
share the same structure with the last residual block of ResNet but
are optimized independently. The shape of ROI-aligned features
fu , fh and fo is w × w × c . Here w and c represent the width
and number of channels. However, compared with entities and
body parts, interaction phrase contains more complicated semantic
information that pure CNN feature is unable to capture effectively.
Therefore, we exploit explicit knowledge of human-object pair to
improve fu by local network conditioning, which is also introduced
in Section 3.3.

To extract fine-grained visual features of human body structure,
we construct body parts by dividing Nk body joints into Np groups
for each detected human instance following RPNN [54]. We apply
ROI-align on fд for all Np body parts. The aforementioned fp is
generated by concatenating all the cropped body part features in
channel-wise, the shape of which isw ×w × (c × Np ). To highlight
the informative body parts related to a certain object, we apply
body part attention on fp , which is introduced in the following
section. In addition to the visual features fu , fh , fo and fp , we
further supplement a holistic context feature fs to encode the global
scene, which is generated by pooling the CNN feature of the entire
image, i.e. fд . The pooled feature is fed into a scene branch, whose
structure is the same as aforementioned branches. With global

FT
La

ye
r

C
o

n
v

FT
La

ye
r

R
e

LU

𝛾

𝑓
𝑓’

C
o

n
v

C
o

n
v

C
o

n
v

C
o

n
v

 

𝛾

𝑓

𝛽λ



C
o

n
v

Figure 3: Feature transform block consists of feature
transform, convolution and ReLU layers.

context feature fs , the multi-level visual representation can be
more comprehensive.

In the training stage, thewhole network is optimized in an end-to-
end way. The bias of features in different levels and large variation
of appearance can be learned with limited number of parameters.
At last, we apply global average pooling [25] on all visual features
to generate feature vectors as inputs of classifiers.

3.3 Multi-level Conditioning
Standard CNN is insufficient to handle complex HOI reasoning
because of the gap between low-level visual feature and high-
level semantic information. To this end, we adopt a multi-level
conditioning mechanism to further improve the reasoning capa-
bility of the aforementioned multi-branch CNN. Specifically, the
proposedmethod dynamically alternate the features of global image,
interaction phrase and body parts with explicit spatial-semantic
information of human body structure and object context.

Global conditioning.We utilize body part segmentation map
introduced in Section 3.1 as global condition to enhance the global
visual feature of the entire image. The segmentation map is fed
into a condition network to generate multi-level condition features
{γ }, which encode the relative locations and shapes of human
body parts on different scales simultaneously. Figure 2 indicates
the overview of the global condition network. It consists of four
consecutive convolution blocks, the same number as the blocks of
CNN backbone. The first condition block has the same structure as
the BaseBlock of CNN backbone and the following ones contain
three convolution layers using 1 × 1 kernel, among which exist
two LeakyReLU activation layers [17]. It is worth noting that the
condition features are spatially aligned with corresponding visual
features all the time. After each block of CNN backbone, global
conditioning is implemented via a feature transform block, FTBlock
shown in Figure 2, which combines visual and condition features
of the same scale. Specifically, as shown in Figure 3, the feature
transform layers T(f |λ, β) of FTBlock apply affine transformation
to dynamically alternate the input visual feature f with modulate
parameters (λ, β) following [45]. The parameters are generated by
a mapping functionM(·) taking condition feature γ of human body
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Figure 4: Body-object configuration map.

as input:
(λ, β) =M(γ ), (2)

T(f |λ, β) = λ ⊙ f + β, (3)
whereM(·) is implemented with double convolution layers using
1×1 kernel and LeakyReLU activation, and ⊙ denotes element-wise
multiplication. The feature transform block (FTBlock) indicated in
Figure 3 is referred to as Gд(f |γ ). Visual and condition features are
fused with residual function [18]:

f ′ = Gд(f |γ ) + f . (4)
The globally conditioned feature fд is generated by consecutive
residual and transform blocks for extracting the multi-level visual
features mentioned in Section 3.2. The effectiveness of global
conditioning is evaluated in experiments.

Local conditioning. Local interaction phrase is a relatively
informative region of image tightly surrounding an HOI candidate.
However, because of the diversity of human object instances
and context, the appearance variety of interaction phrase can
be tremendous, which pure visual features are inadequate to
capture. Therefore, we construct a body-object configuration map
to guide the feature extraction of interaction phrase by network
conditioning. Specifically, a human instance is separated into Np
body parts by grouping the neighboring body joints introduced
in Section 3.1. The body parts, {p1,p2, ...,pNp }, are represented
with a set of bounding boxes around the corresponding body joint
groups with proper margins. Since the local conditioning is applied
on local visual feature fu cropped from the global feature fд , fine-
grained spatial details like shape and edge cannot be reserved.
As shown in Figure 4, we generate a box-level body-object spatial
configurationmap as local condition, encoding the relative locations
of human-object pair (h,o) and all human body parts with two and
Np channels respectively. Each channel is a two-dimensional binary
matrix with the same size of interaction phrase. The digits inside
bounding box is set to 1, otherwise 0. The configuration map is
fed into a local condition network to generate the local condition
feature π . The local condition network consists of four convolution
layers using 1 × 1 kernel, among which exist three LeakyReLU
activation layers. Local conditioning is implemented with local
feature transform module Gl , whose structure is identical to Gд :

f ′u = Gl (fu |π ) + fu . (5)
Compared with global conditioning, local conditioning provides
more specific spatial-semantic guidance for certain HOI candidates.

Body part attention. The function of an object decides how a
human interacts with it and this means close relation exists between
an object and certain body parts. To this end, we assign different
attention to the visual features extracted from different body parts.
We generate attention weightsw ∈ RNp by feeding the word vector
v of target object category into a fully-connected network:

w = κ(κ(vX1 + b1)X2 + b2), (6)

where κ(·) is LeakyReLU activation function, (X1,X2) are project
parameters and (b1,b2) are bias items, X1 ∈ RLv×Lh , b1 ∈ R1×Lh ,
X2 ∈ RLh×Np , b2 ∈ R1×Np . Since the word vectors pretrained
on large-scale linguistic dataset encode the function of objects
in a manner, the knowledge can be transferred among objects in
different categories with similar function. The obtained attention
weights applied on the visual features of body parts:

f ′pi = fpi ·wi , (7)

where i ∈ {1, ...,Np } and fpi is the cropped feature from fд
according to the bounding box of i-th body part. The weighted
and original features of all body parts are fused as follows:

f ′p = E({ f ′p1 , ..., f
′
pNp }) + E({ fp1 , ..., fpNp }), (8)

where E(·) referred to channel-wise concatenation. The experiment
results in Section 4.3 confirm that object context attention efficiently
improves the visual features of human body parts.

3.4 Multimodal Feature Fusion
In addition to multi-level visual features, we further augment a
relative location feature floc and an object context feature fctx
for better performance. floc is generated by two convolution
layers with max pooling, taking human-object configuration map
as input following HO-RCNN. floc is frequently used by HOID
methods [1, 10, 24] to encode the relative locations of bounding
boxeswhich surround the human and object instances in interaction
phrase. It is also proved effective in visual relation detection [53].
With fctx , the word vector of detected object category, the
functional similarity among different objects can be captured
and the interaction knowledge of these functional similar objects
can be transferred [41]. So far we have obtained seven types of
feature: fh , fo , f ′u , fs , f ′p , floc and fctx . All these features are
fed into independent fully-connected classifiers, whose output is
normalized with sigmoid function to estimate probabilities for all
object-independent actions. Then, we adopt a late fusion strategy
following iCAN [10] to fuse the confidence values {δ } of actions
from all branches as well as ρh and ρα , the confidence values of
detected human and object in HOI candidate as follows:

δ̂ = (δh + δo + δu + δp + δs ) ⊙ δ loc ⊙ δctx ,

ρσ = δ̂ωσ · ρh · ρασ ,
(9)

where δ̂ refers to the fused confidence vector of actions and the
superscripts of δ denote the corresponding types of feature. As for
ρσ , it is the confidence value of HOI category σ . It is worth noting
that it is impractical to obtain adequate and balanced training data
considering the possibility that the category space of HOI can be
quite large. We factorize HOI categories into actions and objects
following [39], and recognize them independently. In this way, the



proposed method can handle large-scale category space and long-
tailed data distribution. Besides, the interaction knowledge can be
transferred among different objects, which makes zero-shot HOID
possible [20, 39].

3.5 Model Training
In the training stage, we feed a mini-batch B={(bh,bo,Y )} into the
model for each step, where Y denotes object-independent action
labels Y={(y1,y2, ...,y |Ω |)}, Ω is action category set, y ∈ {0, 1},
bh and bo are defined in Equation (1). Since a human instance
can exert multiple types of action on a target object instance, we
formulate HOI recognition as a multi-label classification problem.
In the training stage, we calculate independent loss values for all
seven branches with binary cross entropy loss function BCE(, ):

L =

|B |∑
p=1

|Ω |∑
q=1

BCE(yp,q , δp,q ),

L̃ = Lh + Lo + Lu + Ls + Lp + Lspa + Lctx ,

(10)

where the subscripts of L indicate the corresponding branches.
Here, the mini-batch loss is a sum instead of an average. It
effectively avoids a situation where the samples in rare categories
are overlooked and can prevent the model from being partial to the
frequently-appearing categories.

4 EXPERIMENTS
4.1 Datasets and Experiment Settings
Datasets. We evaluated the proposed method on two frequently-
used benchmarks, HICO-DET [1] and V-COCO [15]. HICO-DET
is constructed by augmenting HICO dataset [2] with instance
annotations. It includes 47,776 images (38,118 for training and 9,658
for testing) with 600 HOI categories involving 80 object and 117
action categories. Over 150K HOI instances are provided by HICO-
DET. V-COCO is constructed by augmenting a subset of MS-COCO
dataset [27] with interaction category annotations. It includes
10,346 images (2,533 for training and 2,867 for validation and 4,946
for testing) with 26 HOI categories. Over 16K HOI instances are
provided by V-COCO.

Evaluation criteria. The official evaluation metric of both
HICO-DET and V-COCO is mean average precision (mAP) on
all HOI categories. For a detected HOI instance ⟨bhd ,b

o
d ,σd ⟩, it

is considered correct if there exists a groundtruth HOI instance
⟨bhд ,b

o
д ,σд⟩, min(IoU (bhd ,b

h
д ), IoU (bod ,b

o
д )) > ζ andσд = σd . IoU (, )

is the area of bounding box intersection over the area of bounding
box union. ζ denotes IoU threshold, which is equal to 0.5 in official
evaluation settings.

For HICO-DET, there are two different evaluation modes: known-
object and default. In known-object setting, average precision (AP)
for a certain HOI category σ is only calculated over the predicted
HOI instances of images containing objects categorized as ασ .
This setting mainly focuses on the performance of human-object
localization and object-independent action recognition. Meanwhile,
the influence of object classification is reduced. In default setting,
AP for σ is calculated over the HOI detections of all images. For
V-COCO, the locations of human-object pair and action category

are considered while the specific object category is ignored. We
follow the official metrics of both datasets in our experiments.

4.2 Implementation Details
The object detection model we used is FPN [26] with ResNet-
50 [18], which is trained on MS-COCO dataset, following [24].
The word vectors for encoding object categories are trained on
GoogleNews dataset. The dimension number Lv of the word vector
is 300. The multi-person pose estimation model we utilized is
RMPE [9], which is trained on MSCOCO-Keypoints dataset [27].
Each human instance in this dataset is represented with Nk=17
body joints, which are grouped intoNp=6 body parts, including “left
arm”, “right arm”, “left leg”, “right leg”, “head” and “hip” following
RPNN [54]. The human parsing method we utilized is WSHP [8]
trained on PASCAL-Person-Part dataset [3], in which six different
body parts are annotated at pixel level: “head”, “left/right upper
arms”, “left/right lower arms”, “left/right upper legs”, “left/right
lower legs” and “torso”.

The proposed method takes ResNet-101 [18] pretrained on
ImageNet [7] as backbone and is implemented with Pytorch [31].
The shape of ROI-aligned visual feature (w,w, c) is (7, 7, 2048). In
the training stage, we adopt SGD optimizer with initial learning
rate 1e−5, which is reduced to 1e−10 evenly, momentum 0.9 and
weight decay 5e−4. Dropout with 50% connections is applied on all
full-connected classifiers while training. The model is trained for 6
and 18 epochs on HICO-DET and V-COCO, respectively.

In the test stage, we use object detection results provided by
iCAN [10] for fair comparison. The HOI candidates are generated by
pairing all detected human and object instances whose confidences
exceed 0.4.

4.3 Component Analysis
We evaluate the effectiveness of all the proposed components and
designs on HICO-DET dataset. We construct a baseline model
referred to as Base by eliminating all the proposed components
in our method. Specifically, Base consists of the human branch,
object branch, body part branch, phrase branch and spatial branch.
The proposed components, including the scene branch (SB), context
branch (CB), global conditioning (GC), local conditioning (LC) and
body part attention (BPA), are incrementally added to Base.

Evaluation of multi-branch network. Recent works such
as PMFNet [43] and No-Frills [16] use frozen CNN to extract
visual features for HOI reasoning. To learn the distributions of
different types of visual feature, all the layers of the multi-branch
network (Base) are optimized in the training stage. To confirm the
effectiveness of the multi-branch design and training strategy, we
construct a comparison baseline, namely Base-frozen, by freezing
the CNN backbone of Base and initializing the backbone with
weights pretrained on MS-COCO dataset. The experiment results
shown in the first two rows of Table 1 indicate that the CNN based
HOI recognition can be greatly improved by independently learning
the visual patterns at different levels.

Evaluation of new features. We argument two types of feature
in different modalities, i.e. the global scene feature fs and object
context feature fctx , mentioned in Section 3.2 and 3.4, respectively.
The corresponding scene branch (SB) and context branch (CB)
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Figure 5: Qualitative results of the proposedMLCNet onV-COCOdataset. The locations of detected human and object instances
are indicatedwith the bounding boxes and the ⟨action, object⟩ labels below the images are predictedHOI categories. The colors
indicate the consistence between the labels and bounding boxes. Each label contains k actions split by “/” with the highest
confidences, where k is equal to the number of annotated interactions of the human-object pair.

are added to the Base, generating two comparisons, Base+CB and
Base+CB+SB. According to the evaluation results in Table 1, Base+CB
improves the full mAP of Base by 0.59%, and Base+CB+SB achieves
the higher full mAP in comparison with Base and Base+CB. The
experiment results confirm the effectiveness of the proposed scene
branch and context branch.

Evaluation of network conditioning.We construct three new
comparison methods by incrementally adding body part attention
(BPA), local conditioning (LC) and global conditioning (GC) to
Base+CB+SB, namely Base+CB+SB+BPA, Base+CB+SB+BPA+LC, and
Ours (Base+CB+SB+BPA+LC+GC). The row 5 to 7 of Table 1 indicate
that BPA, LC andGC gradually improve the full mAP by 0.07%, 0.24%
and 0.17%, respectively. Furthermore, the complete model Ours
achieves the best performance in this experiment. The component
analysis results confirm that the reasoning capability of CNN is
improved with extra spatial-semantic knowledge.

4.4 Comparison with State-of-the-arts
We compare the proposed MLCNet with the existing methods
on both HICO-DET and V-COCO datasets, following the official
evaluation settings. Table 2 demonstrates the comparison results of
our method and current state-of-the-arts.

On HICO-DET dataset, the proposed MLCNet outperforms
the state-of-the-art methods under both default and known-object
settings with full mAP=17.95% and 22.28% over all 600 HOI
categories. In particular, the mAPs calculated on full, rare, non-rare

Table 1: Component analysis results on HICO-DET in
default setting.

Method full rare non-rare
Base-Frozen 13.85 10.99 14.71
Base 16.20 13.76 16.93
Base+CB 16.79 14.54 17.46
Base+CB+SB 17.47 15.50 18.06
Base+CB+SB+BPA 17.54 15.72 18.08
Base+CB+SB+BPA+LC 17.78 16.32 18.21
Ours 17.95 16.62 18.35

categories under known-object scenario of the proposed method
significantly exceed those of the best existing method PMFNet [43],
by 1.94%, 3.26% and 1.54%, respectively. It confirms that using
extra knowledge as condition can effectively enhance the reasoning
capability of CNN for fine-grained human-object interaction.

Owing to the sparse nature of HOI data, few-shot learning
is another problem requiring special attention. The proposed
MLCNet exploits object context and object-independent action for
knowledge transfer, and achieves the highest rare mAPs, 16.62% and
20.73%, in both default and known-object settings, respectively. The
gap between mAPs over rare categories and non-rare categories,
for our method is 1.73%, which is dramatically lower than that of
RPNN, 5.93%. The experiment results confirm that the adopted
knowledge transfer strategies and loss function can effectively
limit the negative effects from the long tailed training data and



Table 2: Experiment results of comparison with the state-of-the-art methods on HICO-DET and V-COCO.

Method
HICO-DET V-COCO

default known-object role mAPfull rare non-rare full rare non-rare
Gupta et al. [15] - - - - - - 31.8
Shen et al. [39] 6.46 4.24 7.12 - - - -
HO-RCNN [1] 7.81 5.37 8.54 10.41 8.94 10.85 -

Interact-Net [12] 9.94 7.16 10.77 - - - 40.0
GPNN [34] 13.11 9.34 14.23 - - - 44.0
iCAN [10] 14.84 10.45 16.15 16.26 11.33 17.73 45.3

Xu et al. [46] 14.70 13.26 15.13 - - - 45.9
Wang et al. [44] 16.24 11.16 17.75 17.73 12.78 19.21 47.3
Li et al. [24] 17.22 13.51 18.32 19.38 15.38 20.57 48.7
No-frills [16] 17.18 12.17 18.68 - - - -
RPNN [54] 17.35 12.78 18.71 - - - 47.5
PMFNet [43] 17.46 15.65 18.00 20.34 17.47 21.20 53.0

Ours 17.95 16.62 18.35 22.28 20.73 22.74 55.2

lead to similar capabilities for distinguishing the HOI categories
with different frequencies. Our method trades the precision over
non-rare categories for better generalization capability and overall
performance, which results in a non-rare mAP=18.35, slightly lower
than the highest value 18.71% of RPNN [54] in turn.

According to the experiment results on V-COCO dataset, our
method achieves the best performance among all the comparison
methods. We improve the current state-of-the-art role mAP by 2.2%,
thereby demonstrating the effectiveness of the proposed method.
The advanced performance on V-COCO dataset is obtained without
adjusting the hyper-parameters from the experiments on HICO-
DET dataset except for the number of training epochs, showing the
robustness of our model. Figure 5 shows some qualitative results.
For better demonstration, we supplement object categories that are
ignored in V-COCO dataset to the samples in Figure 5.

4.5 Discussion
In the experiments, we also find some limitations of the proposed
method. To encode the extra spatial-semantic knowledge, we
construct condition networks with multiple convolution layers,
which increases the number of parameters. To learn different
appearance distributions of diverse visual content, the multi-branch
structure further enlarge the size of the network, which requires
around 6GB GPU memory for training.

Moreover, in some complex cases involving multiple individuals,
some of the detected HOI instances are less informative than the
others, and this may bring negative effects to the applications
that aim to describe the dominant visual content of image. As
shown by the second and fifth samples in row 3 of Figure 5, the
HOI instances recognized as ⟨look, person⟩ convey less semantic
information than the sport instances. However, since semantically-
interest HOI annotation was not taken into consideration in the
previous work, existing methods cannot obtain the capability of
selecting the most informative HOI instances from complex scene
by supervised learning. This problem deserves more attention and
future research is needed for further exploration of data collection
and model design.

5 CONCLUSION
To bridge the gap between low-level visual feature of image
and high-level semantic information of human object interaction,
we proposed a multi-level conditioned network, which exploits
extra spatial-semantic information as condition to dynamically
influence the behavior of CNN. In this way, the explicit prior
knowledge and implicit visual features are fused for complicated
and fine-grained visual content understanding. We applied off-
the-shelf human parsing and pose estimation models to obtain
the body structure information of human instances in image.
We also utilized object detection model to obtain the locations
and categories of the entities in image. The extra knowledge is
encoded by condition network and used to guide the visual feature
extraction. To evaluate the effectiveness of the proposed method,
we conducted the experiments on two public benchmarks, HICO-
DET and V-COCO. The experiment results demonstrated that our
method significantly outperforms the state-of-the-art methods and
confirmed the effectiveness of the proposed multi-level condition
mechanism and multimodel feature fusion.
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