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Abstract—The ability to learn robust multi-modality rep-
resentation has played a critical role in the development of
RGBT tracking. However, the regular fusion paradigm and the
invariable tracking template remain restrictive to the feature
interaction. In this paper, we propose a modality-aware tracker
based on transformer, termed MTNet. Specifically, a modality-
aware network is presented to explore modality-specific cues,
which contains both channel aggregation and distribution module
(CADM) and spatial similarity perception module (SSPM). A
transformer fusion network is then applied to capturing global
dependencies to reinforce instance representations. To estimate
the precise location and tackle the challenges, such as scale
variation and deformation, we design a trident prediction head
and a dynamic update strategy which jointly maintain a reliable
template for facilitating inter-frame communication. Extensive
experiments validate that the proposed method achieves satisfac-
tory results compared with the state-of-the-art competitors on
three RGBT benchmarks while reaching real-time speed.

Index Terms—Modality-aware, transformer, template update,
RGBT tracking

I. INTRODUCTION

RGBT tracking has been one of the emerging tasks of the
computer vision community, which aims to estimate the posi-
tion and scale of a pre-labeled object in a video sequence [1].
It has diverse applications in robotics, intelligent surveillance,
transportation management, and unmanned vehicles [2], [3].

Recently trackers based on multi-domain learning [4] seek
to enrich target expression by inserting hierarchical fea-
ture extraction [5], [6], diverse attention mechanisms [7]–
[9] and attribute-aware subnetworks [10], [11]. Another type
is inspired by similarity learning [12], [13], which tends to
achieve fast speed. Subsequently, the latest transformer-based
method [14] is proposed to push tracking performance to a
new level. Nevertheless, the robust feature representation and
potential inter-frame information are not explored well due to
the regular fusion network and static tracking template. Some

∗Corresponding Author.

MTNetGroundTruth APFNet 
MANet++ ADRNet DMCNet 

Scale VariationPartial OcclusionBackground Cluster

R
G

B
T

he
rm

al

Fig. 1. Comparison results with representative trackers, i.e., MANet++ [15],
ADRNet [11], DMCNet [5], APFNet [10]. The MTNet performs well in
complex scenarios.

visualization examples indicate most trackers still suffer from
challenging factors, as shown in Fig. 1.

Building on the above analysis, we propose a novel RGBT
tracker named MTNet, which addresses two issues as follows:
(1) How to efficiently extract discriminative cues from het-
erogeneous modalities conducive to instance representation.
(2) How to estimate the precise bounding box and tackle the
tracking challenges. For the first issue, we design a modality-
aware network to adequately emphasize meaningful features
of individual patterns from multiple perspectives. It contains
two cost-effective components, i.e., CADM and SSPM, that
make the utmost use of attention schemes for robust feature
learning. Unlike existing fusion approaches [13], [14], CADM
aims to produce channel-refined features and SSPM flexibly
encodes spatial similarity to guide specific modal enhance-
ment. Then, a hybrid attention-based transformer is applied to
produce a correlation between the fused template and search
region, which comprehensively considers global dependencies
via self-attention and cross-attention. For the second issue,
we define a mutual constraint loss by attaching an extra
localization branch to establish the associations between the
classification and regression branches for joint learning, ensur-
ing accurate results. Instead of adopting optical flow [5], [7]
or sub-networks [16] to refine the bounding box, the update
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Fig. 2. Comparison with state-of-the-art trackers, i.e., DMCNet [5], MIR-
Net [16], MANet++ [15], AGMINet [7], MFGNet [17], SiamCDA [13],
NRCMR [18], HMFT [6] on RGBT234. We plot the Success Rate with respect
to the Frames Per Second (FPS) tracking speed. The bubble area represents
the weighted sum of the FPS and SR.

strategy attempts to maintain a reliable template for boosting
inter-frame communication by accumulating confidence scores
during a time interval. Experimental results prove MTNet
achieves the best results and the top inference speed of 55
FPS on RGBT234, outperforming the newest trackers by a
clear margin, as shown in Fig. 2.

The major contributions of this work are summarized as:
• We propose a novel RGBT tracker that combines the

locality and hierarchy of CNN and the global dependency
of the transformer to learn modality-aware representa-
tions.

• We design a trident prediction head by developing the
mutual constraint loss function to improve localization
accuracy. It further integrates a state-aware template
update strategy to boost tracking performance.

• Extensive experiments demonstrate that the MTNet
achieves satisfactory results while running at real-time
speed.

II. RELATED WORK

A. RGBT Tracking

Recently, deep learning held the dominating status of RGBT
tracking, which mainly consists of two mainstream frame-
works. One type of method is based on tracking by detection.
For example, Lu et al. [5] attempted to exploit useful cues
across modalities and relieve the disturbance of background
clutter by proposing a duality-gated mutual condition network,
which yielded competitive results. Mei et al. [7] presented
an asymmetric global and local mutual integration network
to mine heterogeneous features. Wang et al. [17] conducted a
novel dynamic convolutional filter to fuse multi-modal features
for robust tracking. To cope with multiple challenges, some
variants [10], [11] developed attribute-aware sub-networks to
generate modality-specific representations. Moreover, Zhang
et al. [6] contributed an RGBT UAV tracking dataset and
then proposed a baseline HMFT by combining a multi-stage
fusion. Another type of work incorporates similarity learning
into tracking, which aims to model the optimum matching rela-
tionship between the template and search region. For instance,

Zhang et al. [13] designed a Siamese-based RGBT tracker
with a complementary-aware multi-modal feature fusion. Feng
et al. [14] presented a weight allocation rule to measure the
reliability of shallow features, and then used the transformer to
strengthen semantic information. However, there is still room
for improvement in aspects of cross-modal and inter-frame
cues mining.

B. Vision Transformer for Tracking

Transformer was first designed for machine translation tasks
and has become the dominant structure in natural language
processing. The attention mechanism is the key component in
Transformer, which learns to establish dependencies between
each element in the sequence [19]. Given the success of
transformers in computer vision, the latest studies have applied
this elegant paradigm to visual tracking. For instance, Mein-
hardt et al. [20] defined the tracking-by-attention paradigm
and designed an end-to-end transformer tracker for multi-
object tracking. Chen et al. [21] presented a transformer-based
feature fusion method to replace the traditional correlation op-
eration for building the matching relation between the template
and search region. Yan et al. [22] proposed a novel tracker with
an encoder-decoder transformer by learning spatial-temporal
cues to produce satisfactory tracking results. These ground-
breaking works will motivate us to bring advanced transformer
architectures to RGBT tracking and promote tracking perfor-
mance.

III. METHODOLOGY

A. Network Architecture

The pipeline is shown in Fig. 3. Concretely, we utilize the
tailored Resnet-50 as the backbone to obtain the template
and search region features. Next, the modality-aware network
is invented to generate modality-specific representations. To
establish the accurate matching correlation, we flatten the
fused template and fused search features to vectors and then
aggregate them through the hybrid transformer fusion network.
Then, the prediction head with triple branches is proposed to
estimate the target state. Finally, we apply the template update
strategy to select the most appropriate template for refining the
subsequent tracking sequences.

B. Modality-aware Network

Channel Aggregation and Distribution Module. Thermal
noise or background clutter is widespread in RGBT data.
Channel refinement has become an essential operation in
previous works. As shown in Fig. 4, we construct a simple
yet effective CADM to eliminate the redundant channels of
backbone features. In the stage of channel aggregation, we
first sum the template features fz

R and fz
T (search region

features fx
R and fx

T ) from the backbone, and then the enriched
feature is embedded into the global vector dg via the Global
Average Pooling (GAP) and Fully Connected (FC) layer. The
aggregation operation is defined as:

dg = Fg (GAP (fR ⊕ fT )) , (1)
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where F (·) is the FC layer, R and T indicate two modalities
of RGB and thermal respectively. In the stage of channel
distribution, we present a two-branch FC layer to get nor-
malization channel-wise weights. Then, the channel-refined
template feature maps f̂z

R and f̂z
T are expressed as:

f̂z
i = fz

i ⊗ σ (Fi (dg)) , i ∈ {R, T}, (2)

where ⊗ is element-wise multiplication, σ is Sigmoid function.
Note that CADM has the same structure but unshared weights
for obtaining search region features f̂x

R and f̂x
T .

Spatial Similarity Perception Module. SSPM depends on
similarity learning to produce instance-aware residuals for
further reinforcing a more reliable pattern. The diagram is
shown in Fig. 5. We first take template features as instance-
aware kernels to perform the convolution operation on the
corresponding search region and then produce the similarity
maps for the two modalities separately. The reason is that
the template commonly has a higher responsive intensity in
the high-quality search region, and therefore spatial similarity
maps are suitable for measuring the reliability of the modality
while reinforcing specific representation in the spatial domain.
On account of the convolution filtering reducing the resolution
of the spatial similarity map, we adopt the bilinear interpola-
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Fig. 5. Detailed design of the SSPM.

tion and convolution operation to refine the spatial similarity
map Si, which are defined as:

Si = σ(fconv(BI(f̂z
i ∗ f̂x

i ))), i ∈ {R, T}, (3)
where ∗ denotes convolution operation, fconv means 3 × 3
convolution operation, BI represents bilinear interpolation, σ
is the Sigmoid function. The modality-aware feature maps are
generated by attaching the residual connection, and we receive
the joint representation by merging each modality feature map.
The augmented template and search region features f̃z and f̃x

can be expressed as:
f̃z = f̂z

R ⊕ f̂z
T , (4)

f̃x = ((f̂x
R ⊗ SR)⊕ f̂x

R)⊕ ((f̂x
T ⊗ ST )⊕ f̂x

T ). (5)

C. Hybrid Transformer Fusion Network

The powerful fusion paradigm from TransT [21] is adopted
to sense the correlation between the target and search region.
As shown in Fig. 6, the template feature f̃z and search feature
f̃x are fed into a 1×1 convolutional layer and then reshaped to
generate two vectors Xz and Xx. Then the transformer fusion
network takes Xz and Xx as the input to mine meaningful
features by adopting self-attention and cross-attention. The
multi-head cross-attention module aims to fuse features from
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different branches. Moreover, a feedforward network (FFN)
consisting of two linear layers and a ReLU activation function
boosts the fitting ability of the tracker. We build a hybrid
transformer fusion network by stacking those modules four
times. Finally, an extra cross-attention module is utilized to
obtain the final fused vectors.

D. Trident Prediction Head

The prediction head contains three branches, i.e., classi-
fication, regression and localization. Due to the prediction
inconsistency between classification and regression, we insert
a mutual constraint flow into binary cross-entropy loss by
multiplying the normalized IoU, which aims to suppress
unreasonable proposals. The classification loss is formulated
as:

Lcls = −
∑
j

((yj log(pj)IoU + (1− yj) log(1− pj))), (6)

where yj defines the label of the jth sample yj = 1 denotes the
positive sample, pj indicates the probability belonging to the
foreground, and IoU represents the Intersection over Union
between prediction and ground truth. The regression loss
contains two parts: l1-norm loss and Complete IoU loss [23],
which is defined as:

Lreg =
∑
j

Πyj=1(λ1L1(bj , b̂j) + λCLCIoU (bj , b̂j)pj), (7)

where bj means the j-th bounding box, and pj denotes the
corresponding classification confidence of the positive sam-
ples. The regularization parameters λ1 and λC are set to 5
and 2 respectively. Localization loss is constructed by binary
cross-entropy loss and is described as:

Lloc = −
∑
j

(Oj log(p
loc
j ) + (1−Oj) log(1− plocj )), (8)

where Oj denotes the IoU scores calculated by the regression
branch, and plocj means the predicted value of the localization
branch. The overall loss is defined as:

L = n1Lcls + n2Lreg + n3Lloc. (9)
where n1, n2 and n3 represent the hyperparameters.

E. State-aware Template Update Strategy

In practical tracking tasks, the appearance of the target
object often changes over time. If the tracking template is not
updated in a timely manner, tracking failures can occur. Given

the real-time requirements, it is preferable to design a low-cost
update strategy instead of relying on an additional auxiliary
model. To achieve this, the proposed strategy divides the
tracking process into three states based on confidence levels,
i.e., steady state, transient steady state, and unstable state.
Note that confidence is calculated by multiplying classification
scores and localization scores. Specifically, the steady state is
defined as the condition in which the confidence score of M
consecutive frames is greater than 0.9. Once the steady state is
reached, the current template will replace the initial template.
If the confidence score is between 0.7 and 0.9, we reckon the
tracker is in a state of transient steady and the template remains
constant during this interval. If the confidence is lower than 0.7
and has accumulated up to N times, the tracker may struggle
in an unstable state, and the current template is restored by
an initial template. To pursue the best performance, we set
different update intervals for each state.

IV. EXPERIMENTS

A. Datasets and Metrics

In this paper, we conduct comparative experiments with
high-performance competitors on three popular RGBT bench-
marks, i.e., GTOT [24], RGBT234 [1] and LasHeR [2]. Fol-
lowing mainstream works, we employ two classical metrics,
Precision Rate (PR) and Success Rate (SR) to measure track-
ing performance. For a fair comparison, we set the threshold
of GTOT to 5 pixels and RGBT234/LasHeR to 20 pixels
considering the inherent inconsistent image resolution between
different datasets. Moreover, we apply the Normalized Pre-
cision Rate (NPR) metric to alleviate the influence of the
resolution for testing the LasHeR.

B. Implementation Details

The MTNet is implemented on the PyTorch 1.10 platform
with two NVIDIA RTX3090 GPUs with 24GB memory. In
the offline training phase, MTNet is trained on the LasHeR.
The AdamW optimizer is utilized to update the model, and
the initial learning rate and weight decay are both set to 1e−4.
The model is trained over 40 epochs, each containing 1,000
iterations, with a batch size of 16. After the first 20 epochs, the
learning rate is decreased by a factor of 10. Hyperparameters
n1, n2, and n3 are set to 8, 5, and 1, respectively. During
the online tracking phase, the prediction head generated 1,024
proposals, which are ranked based on window penalty and
location logits. To test the GTOT, update intervals are set to
{50, 2} due to the small scale of the dataset. For other datasets,
update intervals are set to {70, 2}. The best tracking result is
determined by selecting the bounding box with the highest
confidence score.

C. Comparison with the State-of-the-Art

The proposed tracker is compared with 11 latest methods,
i.e., DMCNet [5], MIRNet [16], APFNet [10], AGMINet [7],
MFGNet [17], SiamCDA [13], RMWT [14], HMFT [6],
CMPP [8], MANet++ [15], ADRNet [11].



TABLE I
COMPARISON RESULTS OF OUR METHOD AGAINST THE STATE-OF-THE-ART TRACKERS. ATTRIBUTE-BASED AND OVERALL PERFORMANCE ARE

EVALUATED BY PR/SR SCORES(%) AND ARE PRODUCED ON RGBT234. THE BEST AND SECOND BEST RESULTS ARE IN RED AND GREEN.

Trackers DMCNet [5] MIRNet [16] APFNet [10] AGMINet [7] MFGNet [17] SiamCDA [13] RMWT [14] HMFT [6] MTNet
Pub. Info. TNNLS2022 ICME2022 AAAI2022 TIM2022 TMM2022 TCSVT2022 KBS2022 CVPR2022 -

NO 92.3 / 67.1 95.4 / 72.4 94.8 / 68.0 94.9 / 69.1 92.0 / 64.0 88.4 / 66.4 92.1 / 70.8 90.9 / 67.4 91.0 / 67.8
PO 89.5 / 63.1 86.1 / 62.7 86.3 / 60.6 90.2 / 63.9 84.3 / 58.0 84.2 / 63.9 85.4 / 63.6 85.7 / 62.1 88.7 / 64.8
HO 74.5 / 52.1 71.0 / 49.0 73.8 / 50.7 72.9 / 50.3 66.2 / 44.3 66.2 / 48.7 75.2 / 55.5 66.4 / 46.9 78.6 / 56.3
LI 85.3 / 58.7 83.4 / 57.5 84.3 / 56.9 87.0 / 59.8 79.1 / 54.2 81.8 / 61.2 84:1 / 61.5 83.3 / 59.1 83.3 / 59.5
LR 85.4 / 57.9 83.9 / 56.3 84.4 / 56.5 86.7 / 57.2 79.3 / 49.5 70.9 / 49.9 76.6 / 55.0 76.3 / 57.1 80.4 / 55.4
TC 87.2 / 61.2 81.1 / 59.1 82.2 / 58.1 80.6 / 59.2 81.8 / 55.8 67.4 / 47.7 78.2 / 58.6 72.2 / 50.4 86.1 / 61.6

DEF 77.9 / 56.5 77.8 / 58.1 78.5 / 56.4 79.5 / 56.8 72.1 / 50.8 77.9 / 59.2 80.3 / 62.0 77.6 / 57.9 84.7 / 64.0
FM 80.0 / 52.4 68.3 / 47.1 79.1 / 51.1 79.4 / 51.2 72.5 / 44.6 61.4 / 45.3 74.3 / 55.3 65.9 / 46.9 79.2 / 58.0
SV 84.6 / 59.8 82.7 / 61.9 83.1 / 57.9 83.2 / 59.3 76.1 / 52.8 77.7 / 59.3 86.1 / 65.9 80.0 / 59.2 89.0 / 66.1
MB 77.3 / 55.9 74.6 / 54.6 74.5 / 54.5 78.2 / 57.5 73.7 / 51.0 63.6 / 47.9 76.8 / 57.8 70.6 / 50.9 83.4 / 61.6
CM 80.1 / 57.6 76.4 / 55.4 77.9 / 56.3 79.0 / 57.5 73.2 / 50.4 73.3 / 54.7 83.1 / 62.7 77.9 / 56.2 86.0 / 63.4
BC 83.8 / 55.9 78.9 / 51.7 81.3 / 54.5 83.3 / 55.3 74.3 / 45.9 74.0 / 52.9 74.5 / 52.5 73.8 / 49.8 74.9 / 50.8

ALL 83.9 / 59.3 81.6 / 58.9 82.7 / 57.9 84.0 / 59.2 78.3 / 53.5 76.0 / 56.9 82.5 / 61.6 78.8 / 56.8 85.0 / 61.9

TABLE II
COMPARISON RESULTS ON GTOT.

Trackers HMFT [6] DMCNet [5] CMPP [8] MTNet
PR 91.3 90.9 92.6 93.5
SR 74.9 73.3 73.8 76.0

Overall Performance. As reported in Table I, MTNet out-
performs all other competitors with 85.0%/61.9% in PR/SR,
achieving performance gains of 1.0%/2.7% over the second-
ranked tracker AGMINet on RGBT234. Besides, MTNet
achieves the best results on GTOT, with PR/SR reaching
93.5%/76%, as given in Table II. Specifically, MTNet out-
performs the HMFT by 2.2%/1.1% in PR/SR. Fig. 7 shows
that MTNet obtains the best ranking on LasHeR, with 60.9%,
56.3% and 47.4% in PR, NPR and SR. Furthermore, even
when compared to the retrained tracker mfDiMP [25] for
comparison, MTNet still surpasses it by 0.9%/0.7%.
Attribute-based Performance. The attribute-based compar-
ison on RGBT234 are presented in Table I. The attributes
consist of no occlusion (NO), partial occlusion (PO), heavy
occlusion (HO), low illumination (LI), deformation (DEF), fast
motion (FM), scale variation (SV), motion blur (MB), camera
moving (CM), low resolution (LR), thermal crossover (TC)
and background cluster (BC). Experimental results suggest
that the proposed approach works well in adverse condi-
tions. Specifically, compared to the transformer-based method
RMWT, MTNet achieves performance gains of 3.4%/0.8%,
4.7%/2%, 2.9%/0.2%, 6.6%/3.8% and 2.9%/0.7% in the at-
tributes of HO, DEF, SV, MB, and CM, respectively. One
of the important reasons for the superior performance of
MTNet is the incorporation of CADM and SSPM modules,
which enable the learning of robust multi-modal representa-
tions. Additionally, the proposed state-aware template update
strategy helps to mitigate the impact of unreliable appearance
features. In the attributes of NO, LI, LR, and BC, tracking-
by-detection-based methods, i.e., MIRNet, AGMINet, and
DMCNet achieve the best performance due to their online
training mechanism and extra refinement network, but at the
cost of increased complexity. To summarize, MTNet strikes a
good balance between efficiency and performance compared
to other competing trackers.
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TABLE III
ABLATION STUDY ON DIFFERENT COMPONENTS.

Variants Modality-aware Loss Update PR NPR SR
① 56.8 52.4 44.9
② ✓ 58.6 54.1 46.2
③ ✓ ✓ 59.4 55.0 46.5
④ ✓ ✓ ✓ 60.8 56.3 47.4

D. Ablation Study

Components Analysis. To further validate the feasibility of
each contribution, we implement three variants and test them
on LasHeR datasets, i.e., ① is a base model, which is by
TransT [21] and integrates dual-pattern features via simple
element addition. ② incorporates the modality-aware network
into the baseline tracker. ③ combines prediction head with
mutual constraint loss on the basis of ②. ④ is the final version
equipped with the template update strategy.

According to the tracking results reported in Table III,
we can draw the following conclusions: 1) The modality-
aware network flexibly exploits cues between dual patterns
to enhance modality-aware representation. 2) The trident pre-
diction head improves localization accuracy by unifying the
distribution between each branch. 3) The template update
strategy introduces additional temporal context to alleviate the
appearance variation issue, which boosts overall performance.

TABLE IV
COMPARISON OF DIFFERENT THRESHOLDS ON RGBT234.

Update interval N = 0 N = 2 N = 5
M = 60 83.3 / 60.5 83.7 / 60.8 84.2 / 60.5
M = 70 84.7 / 61.7 85.0 / 61.9 84.9 / 61.8
M = 80 84.0 / 61.1 83.7 / 60.9 84.0 / 61.1
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Parameters Analysis. To measure the impact on performance,
we set M = {60, 70, 80}, N = {0, 2, 5} to carry out evalua-
tion and the comparison results on RGBT234 are reported in
Table IV. We observe the best metrics are determined by the
parameters {70, 2}. When the interval is longer or shorter it
may lead to a suboptimal template. In addition, instantaneously
resetting the current template may cause misjudgment of the
state. In both cases, the best results may not be achieved.
Hence, selecting an appropriate update interval can effectively
improve tracking performance.
Qualitative Analysis. The qualitative comparison is shown
in Fig. 8. Thanks to the modality-aware representation and
reliable template, the proposed tracker performs well when
encountering multiple challenges, especially FM, HO, SV, and
MB. Therefore, the superiority of MTNet has been adequately
verified again via intuitive qualitative comparison.

V. CONCLUSION

In this work, we proposed a novel MTNet for robust RGBT
tracking. A modality-aware network was invented to reinforce
modality-specific cues from multiple perspectives, while a
hybrid transformer fusion network was utilized to establish the
long-distance association between the augmented features. The
trident prediction head and the state-aware template update
strategy were jointly used to a high-quality dynamic template
that tackles various tracking challenges and realizes stable all-
weather tracking. Experiments verify that the proposed method
attains impressive performance compared to state-of-the-art
trackers while achieving real-time requirements.
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