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ABSTRACT

In this paper, we propose a new instance-level human-object
interaction detection task on videos called ST-HOID, which
aims to distinguish fine-grained human-object interactions
(HOIs) and the trajectories of subjects and objects. It is
motivated by the fact that HOI is crucial for human-centric
video content understanding. To solve ST-HOID, we propose
a novel method consisting of an object trajectory detection
module and an interaction reasoning module. Furthermore,
we construct the first dataset named VidOR-HOID for ST-
HOID evaluation, which contains 10,831 spatial-temporal
HOI instances. We conduct extensive experiments to evaluate
the effectiveness of our method. The experimental results
demonstrate that our method outperforms the baselines
generated by the state-of-the-art methods of image human-
object interaction detection, video visual relation detection
and video human-object interaction recognition.

Index Terms— Human-object interaction detection,
spatial-temporal human-object interaction, object trajectory
generation, dynamic interaction recognition

1. INTRODUCTION

Human-object interaction (HOI) describes fine-grained inter-
actions between humans and objects [1]. It is crucial for
human-centric visual content understanding, because accu-
rate HOI detection (HOID) results play a fundamental role
in numerous multimedia applications, such as captioning [2],
multi-modal dialog [3] and visual question answering [4].

Most existing HOID methods are proposed for still
images (ImgHOID) [5, 6], which perform poor when directly
applying them for HOID on videos (VidHOID), because
they cannot effectively explore temporal cues from videos.
For one thing, HOIs in videos are usually changeable over
time, e.g., they may be not detected when humans/objects are
occluded. For another, VidHOID requires to localize humans
and objects with continuous object trajectories across video
frames instead of independent bounding boxes on different
frames. Moreover, VidHOID is more natural to distinguish
fine-grained HOIs by exploring dynamic content, e.g., “wave”
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Fig. 1. Comparison of ImgHOID and ST-HOID. The top row
shows three ImgHOID examples represented with HOI labels
and localized human-object pairs. The bottom row shows a
ST-HOID example using trajectories to indicate the locations
of entities and temporally-consistent label sequences to
indicate the dynamic HOIs. The colors show the consistence
between the labels and bounding boxes.

and “hold” have similar still appearances and they cannot be
effectively distinguished on images.

Though there have been some works for HOI analysis
on videos, they omit some important characteristics of
VidHOID, such as humans/objects localization [7]. There
are also some video analysis tasks similar to VidHOID.
For example, spatial-temporal action detection (STAD) [8]
extracts the trajectories of individuals and recognize the
human actions, but it ignores the objects being interacted
with and it assumes that there is only one object is
being interacting with simultaneously; video visual relation
detection (VidVRD) [9] aims to generate holistic description
for video content with spatial-temporal relation instances,
including visual relations in the format of 〈subject, predicate,
object〉 and the trajectories of subjects and objects, but the
detected visual relation instances are not human-centric.

To this end, we propose a new HOID task on videos,
which provides instance-level VidHOID by taking untrimmed
videos as input and generating a set of spatial-temporal
HOIs consisting of a predicate and object pair 〈predicate,
object〉 and the corresponding trajectories of the subject
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and object. To discriminate the new task with the
existing works, we name it as Spatial-Temporal Human-
Object Interaction Detection (ST-HOID). Compared with
unhuman-centric tasks, i.e., VidVRD, ST-HOID focus on
more meaningful information for deep scene understanding
other than common visual facts like 〈vase, on, desk〉. Figure 1
shows the differences between ImgHOID and ST-HOID.

To the best of our knowledge, there is no existing dataset
suitable for ST-HOID evaluation. Thus, we construct the
first ST-HOID dataset VidOR-HOID based on the large-
scale dataset VidOR [10], which contains 1,134 videos with
densely annotated human and object trajectories and instance-
level HOI labels. Compared with previous datasets for VRD
task, we exclude the predicates such as “on” and “in”, because
they are usually too general to represent the fine-grained
interactions between humans and objects.

The main contributions of this paper are threefold: (1) A
new VidHOID task named ST-HOID, which aims to generate
instance-level HOIs for untrimmed videos. (2) A novel ST-
HOID method consisting of an object trajectory detection
module based on object detection and visual tracking, and an
interaction reasoning module based on multi-modal feature
fusion. (3) The first ST-HOID dataset VidOR-HOID that
contains 1,134 videos from VidOR dataset.

2. RELATED WORK

ImgHOID has drawn much attention from multimedia and
computer vision communities [11]. Shen et al. explore zero-
shot learning and effectively scale ImgHOID [12]. Xu et
al. investigate intrinsic semantic regularities from visual and
linguistic information with multi-modal feature embedding
and satisfying performance is achieved [13]. An effective
model, iCAN, is proposed to enhance ImgHOID with
instance-centric attention mechanism [14]. However, existing
ImgHOID methods can only utilize the static features, which
are insufficient to recognize the dynamic HOIs in videos.

VidHOIR aims to recognize the human-object interactions
on video frames or segments disregard of the corresponding
human and object instances [15]. Zhou et al. design a general
structure to explore the common visual cues at multiple
time scales, and prove that the models equipped with the
temporal relational network can effectively recognize HOIs in
videos [16]. However, VidHOIR only focuses on HOI tagging
while ST-HOID requires not only HOI recognition but also
spatial-temporal localization, which provides understanding
in depth to complex scenes with multiple interactive entities.

VidVRD aims to capture spatial-temporal relation in-
stances in videos, which are represented with relation triplets
and object trajectory-pairs [17]. Recently, another large-
scale VidVRD dataset, VidOR, is constructed, which serves
as a new benchmark towards daily video understanding [10].
Sun et al. explicitly combine the relative motion feature
and the language context feature to perform visual relation

detection and achieve state-of-the-art performance [18].
Compared with ST-HOID, VidVRD focuses on salient
objective relations in holistic video, but latent interactions
between humans could be omitted, which is essential for some
downstream tasks like social relation analysis.

STAD focuses on the dynamic human behavior in
videos, which aims to localize the individuals and recognize
the actions simultaneously. AVA [19] is a frequently-
used dataset for spatial-temporal action detection evaluation.
Singh et al. present a real-time action detection model
by extending an online object detection framework [20].
Sun et al. emphasize the importance of spatial-temporal
context information for action detection and propose a weakly
supervised actor-centered relation network to investigate the
influence of context [21]. Spatial-temporal action detection
only concentrates on the human actions without explicitly
considering the context, especially when a certain person
is interacting with multiple objects simultaneously, which
conveys less semantic information than ST-HOID.

3. METHOD

3.1. Object trajectory detection

We propose an effective object trajectory detection module
to localize objects with temporally-consistent bounding box
sequences. Inspired by existing VidVRD methods [17, 18],
we split a complete video into a series of temporally-
overlapping segments with fixed duration and greedily merge
the obtained short-term ones extracted from video segments.

Short-term trajectories on each video segment are gener-
ated by using visual tracker initialized with frame-level object
detection results. Considering that existing visual tracking
methods requires great computation resource, we propose a
novel short-term trajectory generation algorithm. For each
video segment, we collect and sort the detected objects
on all frames according to their prediction confidences,
which are referred to as O={(bf,m, cf,m, sf,m)|f=1, ..., L}.
Here, b, c and s denote the bounding box, category and
confidence of a detected object on a frame, respectively; f
and m denote the frame index in segment and the detection
index on frame. The frame-level detection with the highest
confidence is the first to be tracked and extended to a
trajectory. Then we calculate intersection over unions (IoUs)
between the untracked objects Ou and the bounding boxes
of the newly-generated trajectory, T̂ ={bf |f=1, ..., L}. The
greatly-overlapping frame-level detection are removed from
Ou and merged into T̂ . This procedure is repeated untilOu is
empty. Assume T̂x={bf |f=m, ..., n} and T̂y={bf |f=p, ..., q}
are two short-term trajectories with the same object category
extracted from two temporally-overlapping video segments.
The trajectory overlap ratio Θ between T̂x and T̂y is calculated
as follows:
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Fig. 2. An overview of the proposed ST-HOID method.

Θ(T̂x, T̂y)=


min(n,q)∑

i=max(m,p)

ϑ(IoU(bi,x,bi,y)>β)

min(n,q)−max(m,p)+1 , n≥p and m≤q
0, otherwise

,

(1)
where ϑ(·) returns 1 if the condition inside is true and returns
0 otherwise; β equals 0.5 in our experiments.

3.2. Interaction reasoning

We combinatorially pair the human trajectories and object
trajectories and extract their co-occurrent parts as HOI
candidates P=(Th, To). P is split into consecutive short-
term segments S={(T̂ ih , T̂ io )}, whose durations are fixed
(e.g., |T̂ ih |=|T̂ io |=10), which serve as the atomic elements for
interaction recognition. The consecutive candidate segments
recognized as the same interaction category are greedily
associated to complete spatial-temporal HOI instances. To
understand the fine-grained interactions between a human and
an object, comprehensive features are necessary to provide
the information of both human behavior and object context.
In this paper, we propose an interaction recognition module
using multi-modal feature fusion.

Human behavior descriptor. To capture the fine-grained
human behavior, we focus on the motion of human body
parts. We apply an off-the-shelf multi-person pose estimation
method, RMPE [22], which is pretrained on MSCOCO-
keypoint dataset, to obtain the body structure information. It
represents a human instance on a video frame with a skeleton
H={p1, ..., pNk

}, where pi denotes the coordinate of the i-th
body joint and Nk=17. We assign the obtained frame-level
skeletons to the corresponding human trajectories according
to the IoUs between the bounding boxes of the skeletons
and trajectories on each frame. In this way, the skeletons
obtained from individual frames are associated to temporally-
consistent skeleton trajectories T ′h = {Hf}.

Considering the fact that an interaction is performed by
different body parts jointly, we extract and combine the
dynamic visual features of different body parts for fine-

grained HOI reasoning. Specifically, for an HOI candidate
segment (T̂h, T̂o), T̂h can be separated into Nk body part
trajectory segments {T̂ 1

p , ..., T̂ Nk
p } as mentioned above. For

each T̂p, we apply ToI-pooling (trajectory of interest) [23]
to encode its dynamic appearance information. ToI-pooling
takes T̂ and CNN feature maps extracted from the video
segment containing T̂ as inputs. According to each bounding
box bi of T̂ , frame-level feature fi is obtained by applying
RoI-align on the i-th CNN feature map. We fuse all the frame-
level features {f1, f2, ..., f|T̂ |} extracted from T̂ to generate

a dynamic visual feature f̃ for a body part trajectory segment
as following:

f̃ =M({f1, f2, ..., f|T̂ |}), (2)

where M(·) denotes element-wise maximum. We obtain
a feature vector v, whose length is c, by applying global-
average-pooling on f̃ . For one thing, ToI-pooling reserves
the spatial information of 2D feature maps. For another,
ToI-pooling can tolerate trajectories with different sizes. We
combine the feature vectors extracted from Np body part
trajectory segments as the human behavior descriptor:

fA =
⊎

k=1,...,Np

vk, (3)

where vk corresponds to the k-th body part and
⊎

denotes
accumulated feature concatenation.

Relative motion feature and semantic context feature.
We further include a relative motion feature fM and semantic
context feature fC to enhance the capability of the interaction
recognition module. For an HOI candidate segment (T̂h, T̂o),
fM encodes the relative location and motion between the
human and object over time, the effectiveness of which has
been validated by video visual relation detection method
VidVRD-MMF [18]. Specifically, the relative location
is encoded as f tLOC=(x−x

′

w , y−y
′

h , log w
w′ , log h

h′ , log w·h
w′·h′ ),

here (x, y, w, h) and (x′, y′, w′, h′) are the t-th bounding
boxes of T̂h and T̂o, respectively. The relative motion feature
fM is calculated as follows:

fM = f1
LOC ⊕ fLLOC ⊕ (fLLOC − f1

LOC), (4)



where ⊕ denotes feature concatenation; L=|T̂h|=|T̂o|, i.e.,
the temporal length of HOI candidate segment. Besides,
considering that certain interactions are closely related to
certain human and object categories, we utilize a set of
word vectors pretrained on large-scale linguistic dataset to
represent different human and object categories following
VidVRD-MMF. We concatenate the two word vectors vh and
vo corresponding to the categories of T̂h and T̂o as semantic
context feature fS=vh ⊕ vo.

Factorized interaction recognition. Considering the
great number of interaction category combinations, we
decompose interaction recognition into object classification
within an object category set Ω and predicate classification
within a predicate category set Φ. The object category ω ∈ Ω
is recognized in object trajectory detection and the predicate
classification relies on the object category ω and obtained
multi-modal features fA, fM and fS , which are fed into
three independent classifiers C to estimate the probabilities
of all predicate categories, where the subscript t∈{A,M,S}
denotes the type of feature and λω is a hard attention mask.
Specifically, λω is a binary vector containing |Φ| elements,
each of which corresponds to a certain predicate of Φ. If
a predicate is never related to an object categorized as ω in
the training data, the corresponding element is set to zero
and otherwise one. In this way, the easy-negative predicate
categories are filtered out by the interacted object context,
which also makes training focuses on the related predicates.

Training loss. Since different predicates are not mutually
exclusive, e.g., “watch” and “cut” a “cake”, we assume that
different interactions are performed independently and utilize
binary cross entropy loss for training. During training, a
data sample is a manually annotated HOI segment (T̂ gh , T̂ go ,
〈ϕg, ωg〉). The predicate category ωg is represented with
a binary vector γg , whose length is equal to |Φ|, and the
prediction of γg is represented as a vector ρ̂. The element
of γg corresponding to ϕg is set to one and others are set to
zero. The training loss is calculated as following:

L = −
∑

t∈[A,M,S]

|Φ|∑
i=1

γig log(ρ̂it) + (1− γig) log(1− ρ̂it).

(5)
4. EXPERIMENTS

4.1. Metrics and dataset
We inherit class mAP from ImgHOID as a primary
metric, i.e., mean average precision over classes, which is
widely used in detection tasks. It can effectively validate
the generalizing-capability of methods and is sensitive to
the models that over fit the frequency of data. Following
VidVRD, we adopt video mAP as well, i.e., mean average
precision over videos. Considering the fact that incomplete
annotation is an inevitable problem in constructing datasets
for complex semantic analysis tasks such as ST-HOID and
VidVRD, we also adopt recall@K following VidVRD.

Table 1. Comparison of different object trajectory detection
methods on VidOR-HOID dataset.

mAP FPS
IoU-match 8.03 268.64

Track+tNMS 12.23 2.21
Ours 12.08 13.09

Owing to the fact that object trajectory detection is still
an open problem which is hardly explored, we evaluate the
proposed method on a task named HOI tagging. It takes
videos as input and predicts a set of HOI labels as output,
eliminating the influence of object trajectory detection and
is compatible to existing VidHOIR methods. We utilize
precision@N to evaluate the accuracy of predicted HOI labels
following relation tagging in VidVRD, here N is 1, 5 and 10.

For ST-HOID evaluation, we randomly select 1,134
videos from VidOR, in which the spatial-temporal HOI
instances are reserved while others are eliminated. Then the
videos are split into two parts, 867 for training and 267 for
testing. The HOI categories with less than 10 instances are
removed so that the models can extract knowledge from all
categories while the natural long-tailed distribution of data is
preserved. At last, we obtain 10,831 spatial-temporal HOI
instances in VidOR-HOID dataset (8,501 for training and
2,330 for testing). The dataset consists of 295 HOI categories
with 29 predicates and 43 object categories.

4.2. Component Analysis
Object trajectory detection. The proposed object trajectory
detection module are evaluated by comparing with two
baseline methods, IoU-match and Track+TNMS. Specifically,
IoU-match is implemented by greedily associating the frame-
level detected boxes on consecutive frames. Track+tNMS is
the object trajectory detection module adopted by VidVRD
and ST-GCN, which generates short-term trajectories by
tracking all frame-level detected boxes in each video segment
and removing the redundant ones with tublet non-maximum-
suppression (tNMS). The short-term trajectories extracted
from consecutive video segments are greedily associated
according to their overlaps, similar to our proposed method.
To compare the effectiveness and efficiency of different
methods, we adopt mAP and FPS as evaluation metrics
following object detection, as shown in Table 1. The
experiments are applied on the same device with one NVIDIA
GTX-1080ti GPU.

Interaction recognition. Whilst object trajectory
generation is still an open problem, we construct a baseline
referred to as Ours-GT by replacing the detected trajectories
with manual annotated ones in the proposed method to
eliminate the influence of object trajectory detection. As
shown in Table 2, we firstly construct three baselines Ours-
GT w/o OC, Ours-GT w/o LF, Ours-GT w/o CF by removing
the adopted three training techniques including the hard
object context (OC), late feature fusion (LF) and HOI



Table 2. Evaluation of our method with groundtruth object trajectories and different interaction recognition modules on VidOR-
HOID dataset.

Method ST-HOID HOI tagging
class mAP video mAP R@50 R@100 P@1 P@5 P@10

Ours-GT w/o BP 15.98 20.89 23.50 27.62 62.54 33.93 22.28
Ours-GT w/o OC 10.04 11.93 20.63 25.20 57.30 31.98 20.49
Ours-GT w/o LF 16.32 21.88 24.44 28.25 62.92 33.78 22.06
Ours-GT w/o CF 14.78 18.14 21.52 24.80 59.18 31.76 22.24

Ours-GT 16.63 21.95 23.99 28.07 68.53 34.38 22.40

Table 3. Comparison of our method and the state-of-the-art baselines on VidOR-HOID dataset.

Method ST-HOID HOI tagging
class mAP video mAP R@50 R@100 P@1 P@5 P@10

STGCN [24] 0.29 0.27 0.66 0.91 26.14 14.13 10.28
VidVRD [17] 1.46 0.91 1.35 1.79 13.86 9.44 7.04
VidVRD-MMF [18] 1.72 2.79 3.27 3.86 46.82 18.65 12.25
TRN [16] 0.21 0.01 0.04 0.09 41.95 19.44 16.38
HO-RCNN [11] 0.78 1.55 2.73 3.41 34.77 14.80 10.19
iCAN [14] 1.17 2.03 3.14 3.90 41.95 19.55 12.55
Ours 2.57 3.22 3.63 4.13 50.94 20.30 13.07

category factorization (CF), respectively. As shown in the last
four rows in Table 2, the complete version of the proposed
method achieves the best performance, demonstrating that all
three training techniques adopted can improve the capability
of recognition. Besides, we utilize a human behavior
descriptor to capture the subtle motions of the individuals
in video. To evaluate its effectiveness, we remove it from
our method and construct a baseline Ours-GT w/o BP. All
results of Ours-GT w/o BP are significantly worse than ours.
It demonstrates that adopted dynamic visual feature of human
body parts can improve the capability of recognition.

4.3. Comparison with State-of-the-arts

Baselines. We construct two baselines from two ImgHOID
methods, HO-RCNN [11] and iCAN [14]. Specifically,
HO-RCNN and iCAN are trained using the key frames of
videos. During the testing, the obtained models are utilized to
densely detect HOI instances on all video frames, which are
greedily associated as spatial-temporal HOI instances. We
construct three baselines based on three VidVRD methods,
VidVRD [17], STGCN [24], and VidVRD-MMF [18]. We
make these VidVRD methods fit ST-HOID task by filtering
out the detected relation instances whose subjects are not
human and eliminating the subjects from the recognized
relation triplets. Besides, we extend a VidHOIR method
TRN [16]. Since TRN only predicts HOI labels for trimmed
videos and ignores the locations of entities, we provide
our detected object trajectories and take TRN as interaction
reasoning head. We re-train these baseline methods with
their provided best training strategies and pre-trained models.
If their own strategies or model weights are not available,

we adopt the same strategy as ours and standard pre-trained
backbones for fair comparison.

Results. Table 3 indicates the comparison results.
Compared with the ImgHOID based methods HO-RCNN and
iCAN, the proposed object trajectory detection module can
effectively generate accurate trajectories for both individuals
and objects, which provide temporally-consistent location
information of the entities and help the proposed interaction
recognition module to encode the dynamic human behavior
and their relative motion. Compared with the VidVRD based
methods VidVRD and STGCN, the proposed method focuses
on analyzing fine-grained human behavior so as to pay
more attention on human-centric visual content. Compared
with VidHOIR based method TRN, our method generates
instance-level HOI instances by directly analyzing upon
specific human-object trajectory pairs. The higher tagging
precision@1 and precision@5 also confirm that the capability
of recognition can be improved with the assistance of explicit
instance-level information.

5. CONCLUSION

In this paper, we proposed a new human-centric video
understanding task named ST-HOID, which aims to describe
the dominant visual content of videos with instance-level
HOIs, and requires both spatial-temporal object localization
and dynamic interaction recognition. We propose a novel ST-
HOID method consisting of object trajectory detection and
interaction reasoning, which aims to construct a new baseline
framework for further research. To evaluate the effectiveness
of the proposed method, we constructed a ST-HOID dataset.



t t

t t

<play(instrument), guitar><play(instrument), guitar><play(instrument), guitar><play(instrument), guitar>

<play(instrument), guitar><play(instrument), guitar><play(instrument), guitar><play(instrument), guitar>

<ride, bicycle>                    <ride, bicycle>                    <ride, bicycle>                  <ride, bicycle>    

<ride, bicycle>                <chase, child>                    <ride, bicycle>                  <watch, child>    

<lean on, baby seat>          <lean on, baby seat>          <lean on, baby seat>          <lean on, baby seat>

< watch, adult >              <lean on, baby seat> < watch, adult >                   <watch, adult> 

<ride, watercraft>               <ride, watercraft>               <ride, watercraft>               <ride, watercraft>
<ride, watercraft>               <ride, watercraft>               

<ride, watercraft>               <ride, watercraft>

Fig. 3. Qualitative results of our method on VidOR-HOID dataset.

The experiment results show that the proposed method is
superior to the state-of-the-art baselines.
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