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ABSTRACT

Salient object detection aims to detect the attractive objects
on images and videos. In this paper, we propose a novel
salient object detection method for videos based on cross-
frame cellular automata. Given a video, we first represent
the video frames with super-pixels, and construct a saliency
propagation network among super-pixels within a frame
and between adjacent frames based on their appearance
similarities and temporal coherency. Second, we initialize
the saliency map of each frame with the fusion of two
saliency maps generated by appearance and motion features
independently. Finally, we utilize cellular automata updating
to propagate saliency among super-pixels iteratively and
generate the coherent saliency maps with complete objects.
The experimental results show that our method outperforms
the state-of-the-art methods on different types of videos.

Index Terms— Salient object detection, video saliency,
cross-frame cellular automata, saliency propagation network

1. INTRODUCTION

Served as a fundamental of various multimedia applications,
salient object detection aims to detect the attractive objects
on images and videos [1]. It is widely used in content-aware
editing [2], information retrieval [3], social computing [4] and
so on. In decades, many methods are proposed for detecting
salient objects on images effectively [5–7], but the study of
salient object detection on videos is still insufficient [8, 9].

Compared to salient object detection on images, video
salient object detection faces two challenges. One challenge
is that object motion usually plays an important role in salient
object detection on videos, because it represents the temporal
contrast of objects to background [10]. The other challenge is
that the appearances of salient objects in videos are variable,
which makes it difficult to obtain coherent salient objects
over frames [11]. Hence, simply applying image salient
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object methods on video frames cannot obtain satisfactory
performance.

To overcome the aforementioned challenges, we propose
a novel video salient object detection method using cross-
frame cellular automata. Cellular automata can update the
state of each cell in terms of its current state and the
states of the cells in its neighborhood [12], which has
shown its effectiveness in saliency map refinement for image
salient object detection [6]. In the proposed method, we
apply cellular automata updating on a cross-frame saliency
propagation network to refine the saliency map of each video
frame and generate coherent saliency maps with complete
objects. Figure 1 shows an overview of the proposed method.
We first represent each video frame with super-pixels and
construct a cross-frame saliency propagation network based
on the appearance similarities and motion coherency among
the super-pixels within a frame and between adjacent frames.
Second, we calculate two saliency maps for each video
frame based on its appearance and motion features, and fuse
them to initialize saliency propagation network. Finally, we
apply cellular automata updating on the initialized saliency
propagation network to refine the saliency maps of all the
frames iteratively until the final saliency maps are generated.

Our contributions mainly include:

• We apply cellular automata in video salient object
detection for the first time by constructing a cross-
frame saliency propagation network, which helps to
generate coherent saliency maps for videos.

• We utilize both appearance and motion features
followed by entropy-based adaptive fusion in saliency
map initialization, which can handle both static and
moving salient objects.

• We construct a dataset, named NoMot, containing
10 videos without obvious camera motion or object
motion to complement evaluation, and validate the
proposed method on it together with two public
datasets. It shows that our method outperforms the
state-of-the-art methods on different types of videos.
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Fig. 1. An overview of the proposed video salient object detection method.

2. RELATED WORK

2.1. Image salient object detection

Salient object detection methods on images mainly depend
on appearance features, such as color contrast. For example,
Achanta et al. [13] detected salient objects based on the
distance between the color of each pixel and the average color
of the image. Cheng et al. [14] weighted global color contrast
with spatial distance to emphasize saliency locality. Image
content location is also considered to refine saliency detection
performance, such as center bias [15] and boundary bias [5].

Besides color and location, depth is used in salient object
detection on RGB-D images. For instance, Feng et al. [7]
proposed a novel RGB-D saliency feature, named local
background enclosure, to directly measure salient structure
from depth. Guo et al. [16] initialized saliency maps with the
fusion of color saliency and depth saliency, and propagated
saliency among super-pixels for refinement.

Recently, graph-based models are widely used in salient
object detection. Specifically, Yang et al. [17] generated a
coarse saliency map by background modeling and propagated
saliency by manifold ranking. Qin et al. [6] generated
the initial saliency map by integrating color distinction and
spatial distance against boundary, and refined saliency map
with cellular automata. Zhang et al. [18] employed multiple
graphs and modeled the visual rarity in the optimization
framework to satisfy the requirement of saliency detection.

2.2. Video salient object detection

Different to fixation prediction on videos [19–21], video
salient object detection focuses on extracting complete salient
objects by exploring the spatio-temporal characteristics of
video content. Seo et al. [22] measured the likeness of
each pixel to its surroundings using local regression kernel
and computed its saliency with self-resemblance. Liu et

al. [23] measured the spatial and temporal saliency based on
global contrast, spatial sparsity and motion distinctiveness,
and fused them to generate the saliency maps. Huang et
al. [9] classified the trajectories with SVM to remove the
dominant camera motion, and calculated the saliency of
each trajectory by diffusing it to its surrounding regions.
Wang et al. [10] calculated the geodesic distance from each
super-pixel to the frame boundaries to measure its object
probability. Liu et al. [11] proposed a saliency model for
unconstrained videos based on super-pixel level graph and
spatiotemporal propagation.

3. OUR METHOD

3.1. Saliency propagation network construction

An effective video salient object detection method requires to
provide coherent saliency maps on all the video frames, i.e., if
a region on some video frame is indicated as a salient object,
the corresponding regions on other video frames should also
be indicated as a salient object with similar saliency. To
generate such coherent saliency maps, we construct a saliency
propagation network G = {V, E} crossing all video frames.

In the construction of G, we treat the super-pixels in video
frames as the network nodes. Given a video frame F t, we
over-segment it into super-pixels using simple linear iterative
clustering algorithm [24], and represent frame F t with a
super-pixel set Vt = {pti}, where pti is the super-pixel in
frame F t and Vt is a subset of V .

We use large displacement optical flow algorithm [25]
to generate optical flow between adjacent frames, which
describes the motion of each pixel from one frame to the
subsequent one. Given the video frames and optical flows, we
extract three features for each super-pixel: average color on
L∗a∗b∗ color space, average motion vector, and 32-D motion
histogram with 8 orientations and 4 velocities.



For each super-pixel pti in frame F t, we match it with
the super-pixels in the adjacent frames. For the super-pixels
in each frame are generated independently, one super-pixel
may not be exactly matched to another super-pixel in its
adjacent frame. To address the problem, we use soft-matching
strategy. Here, we take matching pti to the super-pixels in
frame F t+1 as an example. For each pixel within pti, we
determine its corresponding position in frame F t+1 according
to its optical flow, and find the super-pixel in F t+1 which the
corresponding position belongs to. For each super-pixel pt+1

j

in frame F t+1, we calculate the ratio of the pixels within pti
whose corresponding positions belong to pt+1

j :

ρt,t+1
i,j =

|Φ(pti, p
t+1
j )|

|pti|
, (1)

where Φ(pti, p
t+1
j ) is a set of the pixels within pti whose

corresponding positions belong to pt+1
j ; | · | denotes the set

cardinality.
Considering the inaccuracy of optical flow, we only

retain the high-confidence matching relationships to avoid
mismatching, i.e., the matching relationship from pti to pt+1

j

is retained when ρt,t+1
i,j is larger than a threshold τint, which

equals 0.3 in our experiments. Finally, we normalize the
matching relationship from pti to pt+1

j :

γt,t+1
i,j =


ρt,t+1
i,j∑

Ω
t,t+1
i

ρt,t+1
i,k

, ρt,t+1
i,j ∈ Ωt,t+1

i

0, otherwise
(2)

where Ωt,t+1
i = {ρt,t+1

i,k |ρt,t+1
i,k > τint}. Thus, we have

Et,t+1 = {(pti, p
t+1
j )|γt,t+1

i,j > 0}, where Et,t+1 is a subset
of E with the edges from F t to F t+1. Similarly, we match
pti to the super-pixels in F t−1 for bi-directional saliency
propagation.

Inspired by [6], saliency propagation among super-pixels
within a video frame is beneficial to refine its saliency map.
Hence, we supplement the relationships between super-pixels
within a frame to the saliency propagation network, Et =
{(pti, ptj)|pti is adjacent to ptj}. The weight of edge between
pti and ptj is:

γti,j =
( mt

i ·mt
j

2‖mt
i‖‖mt

j‖
+

1

2

)
· exp

(
− λ‖cti − ctj‖2

)
, (3)

where mt
i and mt

j are the average motion vectors of pti and
ptj ; cti and ctj are the average L∗a∗b∗ color of pti and ptj ,
respectively; λ equals 10 in our experiments.

In this way, we construct a saliency propagation network
which can propagate saliency among super-pixels within a
frame and between adjacent frames.

3.2. Saliency map initialization

We initialize the saliency propagation network by indepen-
dently generating a saliency map for each video frame based

on the intra-frame sub-network Gt = {Vt, Et}. In saliency
map initialization, we utilize appearance and motion features
separately to generate saliency maps and fuse them together,
which can handle both static salient objects and moving
salient objects.

For appearance saliency, we utilize a saliency detection
method based on boundary connectivity and color con-
trast [5]. The appearance saliency of pti is denoted as Sta,i.

For motion saliency, we consider that the super-pixels
Vtb = {ptb|ptb is on the boundary of F t} are more likely to
be background, so their motion feature could approximately
represent the background motion. To each super-pixel pti, we
calculate the geodesic distance, i.e., the accumulated edge
weights along its shortest path, to super-pixels in Vtb , and
choose the minimum geodesic distance as its motion saliency:

Stm,i = min
ptb∈V

t
b

(
min

v1=pti,v2,...,vn=ptb

∑n−1

k=1
ω(vk, vk+1)

)
,

s.t.(vk, vk+1) ∈ Et (4)

where ω(·, ·) is defined as:

ω(pti, p
t
j) = exp

(
λ · χ2(hti,h

t
j)
)

(5)

in which hti and htj are the 32-D motion histograms of pti and
ptj , respectively; χ2(·, ·) is chi-squared distance between two
histograms; λ equals 10 in our experiments.

To fuse the two saliency maps generated by appearance
and motion features, we propose an entropy-based adaptive
fusion strategy, which conforms to the intuition that a saliency
map with smaller entropy and average value tends to have
higher confidence and hence deserves larger fusion weights:

Sti =


δ2a · Sta,i + (1− δ2a) · Stm,i, δa ≤ τl

Sta,i · Stm,i, τl < δa < τh
(1− δ2m) · Sta,i + δ2m · Stm,i, δa ≥ τh

(6)

where δa = Sm·E(Sm)

Sm·E(Sm)+Sa·E(Sa)
, in which Ss and Sm are

pixel-level saliency maps with average value Ss and Sm,
respectively; δm = 1 − δa; τl = 0.4 and τh = 0.6 in our
experiments. The entropy of a saliency map S is :

E(S) = −
∑K

k=1
log2 nk (7)

where nk is the number of pixels with saliency level k; K is
the total number of saliency levels, which equals 256.

3.3. Saliency refinement with cellular automata updating

Based on the initialized saliency propagation network, we
utilize cellular automata updating [12] to refine the saliency
maps by propagating saliency among super-pixels. Inspired
by [6], we treat our saliency propagation network as a cellular
automata, in which the states of cells correspond to the



saliency values of super-pixels. Different from conventional
cellular automata whose cells have finite number of states,
saliency in our network is continuous-valued. Our network
is iteratively updated to make each super-pixel have similar
saliency value to its similar neighbors.

For three consecutive frames, we have the sub-network
Gt−1,t,t+1 = {Vt−1

⋃
Vt
⋃
Vt+1, Et−1,t

⋃
Et
⋃
Et,t+1}.

The saliency value of pti on the middle frame after an iteration
is updated to:

St∗i = ηiS
t
i +

1− ηi∑
j γ

t,t−1
i,j +

∑
k γ

t
i,k +

∑
l γ
t,t+1
i,l

·(∑
j

γt,t−1i,j St−1j +
∑
k

γti,kS
t
k +

∑
l

γt,t+1
i,l St+1

l

)
, (8)

where Sti is the saliency value of pti before this iteration; St−1j ,
Stk and St+1

l are the saliency values of pti’s neighbors in the
previous, current and next frames, respectively; γt,t−1i,j and
γt,t+1
i,l are given by Eq. (2); γti,k is defined in Eq. (3); ηi is a

parameter to balance the influence of pti’s own saliency value
and the saliency values of its neighbors, which is defined as:

ηi = α

(
max

{
max
j
γt,t−1i,j ,max

k
γti,k,max

l
γt,t+1
i,l

})−1
+β,

(9)
where α and β are parameters to retain propagation stability,
which equal 0.6 and 0.2 in our experiments.

We propagate the saliency value among super-pixels
iteratively until obtaining stable saliency maps for all the
video frames or reaching a predefined iteration number, which
equals 10. For the existence of incomplete and omitted salient
objects in initialization, the saliency of salient objects may be
not high in value. Similarly, the highlighted background in
initialization may cause the residual saliency in background,
which may reduce the saliency difference between salient
object and background. Hence, We globally normalize the
saliency maps of all the frames to generate the final salient
object detection result.

4. EXPERIMENTS

4.1. Datasets and experiment settings

Two public datasets, SegTrackV2 [26] and UVSD [11], are
used in the performance validation. SegTrackV2 contains 14
videos with various scenes and diverse motion activities, and
UVSD contains 18 unconstrained videos with complicated
motion and complex scenes. Considering these two datasets
emphasize motion cues more than appearance cues in saliency
detection, we construct a dataset with 10 videos without
obvious camera motion or object motion, named NoMot, for
comprehensive evaluation. The groundtruth on each video
frame is manually labelled using Adobe Photoshop.

All the experiments are carried out on a computer with i7
3.5GHz CPU and 32GB memory.
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Fig. 2. Validation of each step in our method on UVSD.

4.2. Ablation study

We first validate the effectiveness of each step in our method:
appearance saliency detection, motion saliency detection,
saliency fusion and saliency refinement. Figure 2 shows the
validation result on UVSD. We can see that the fused saliency
obtains better performance than both appearance saliency and
motion saliency, and saliency refinement further improves
the performance. It shows that each step in our method is
effective for generating the final saliency maps.

4.3. Comparison

To illustrate the effectiveness of our method, we compare it
with six state-of-the-art salient object detection methods on
videos: CE [8], DCMR [9], GD [10], SGSP [11], SP [23] and
SR [22]. For all the compared methods, we use the default
settings suggested by the authors.

Figure 3 shows three examples of salient object detection
results generated by different methods. The top, middle and
bottom sample videos are from NoMot, SegTrackV2 and
UVSD, respectively. It shows that our method can obtain
good saliency detection performance on different types of
videos. In contrast, the compared methods may fail in
some situations. For instance, SGSP may obtain random
saliency map on the videos without obvious object motion
(top example), GD may mix a salient object and background
when they have similar colors (middle example), and DCMR
may omit a salient object completely on some video frame
(bottom example).

Figure 4 shows the comparison results of our method and
other methods with PR curve on three datasets, and Table 1
shows the comparison of weighed Fβ-measure Fωβ (β2 = 0.3
to follow common practice) [27]. It shows that our method
outperforms other methods on all the datasets in most cases,
except that GD performs better than us on SegTrackV2. It
is mainly caused by the defect of our method that residual
saliency may appear in background regions after propagation.

As shown in Table 1, we compare the efficiency of
our method with other methods on running time per frame.
Our efficiency is similar to that of SGSP and GD. The
reason is that SGSP, GD and our method all rely on LDOF



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 3. Examples of the salient object detection results of different methods. (a) Video frames. (b) Manually labelled
groundtruth. (c)-(h) Results of CE [8], DCMR [9], GD [10], SGSP [11], SP [23] and SR [22], respectively. (i) Our results.
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Fig. 4. Comparison with the state-of-the-art methods on PR curves. (a) NoMot. (b) SegTrackV2. (c) UVSD.

algorithm [25] to compute optical flow, which occupies most
of the computation cost.

4.4. Discussion

In the experiments, we also find some limitations of the
proposed method. Figure 5 shows a failure example. Small
size of the salient object, complex scenes, combining with
unconstrained camera motion, together lead to the result that
our method cannot effectively distinguish the salient object
from the background.

5. CONCLUSION

In this paper, we propose a video salient object detection
method via cross-frame cellular automata, which can

obtain coherent saliency maps over all the video frames.
Specifically, we constructed a saliency propagation network
to represent the similarities among super-pixels, initialized
it with the fusion of appearance saliency map and motion
saliency map, and refined the saliency maps iteratively
by propagating saliency among super-pixels with cellular
automata updating. The experimental results demonstrated
that the effectiveness of our method in detecting both static
and moving salient objects on different types of videos.
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