

ICME 2016, Paper #254



# Salient Object Detection for RGB-D Image via Saliency Evolution

#### Jingfan Guo, Tongwei Ren, Jia Bei Nanjing University July 12, 2016



Multimedia AnalyzinG and UnderStanding

## **Salient object detection**



• Find visual attractive objects





- Multimedia applications
  - Image and video compression
  - Image editing and manipulating
  - Video summarization
  - Content-based image retrieval
  - •

#### Content-aware image resizing



[1] S. Avidan & A. Shamir. Seam Carving for Content-Aware Image Resizing. TOG 2007



## From RGB to RGB-D



• Low-cost depth sensors



- Depth data provides important spatial information
  - complementary to color channels
  - potential to improve salient object detection



### Challenge



- How to manipulate depth data?
  - always noisy







may conflict with color cue





Color saliency: characters on the wall

Depth saliency: bonsai



NANJING UNIVERSITY

### **Overview of our method**



- Evolution strategy for RGB-D saliency
  - 1. initiate by different cues separately
  - 2. fuse to roughly locate the salient regions
  - 3. propagate to capture the whole salient object





## **Super-pixel segmentation**



- SLIC simple linear iterative clustering <sup>[1]</sup>
  - simple, fast, adhering to boundaries



- Extend to RGB-D
  - · bring depth in spatial proximity term





 $\label{eq:compared} \ensuremath{\left[1\right]}\ensuremath{R}. A chanta et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. TPAMI 2012$ 



### **Color-based saliency**



- Weighted global color contrast
  - · rarer colors tend to be salient
  - weighted by background probability and spatial distance

 $S_i^c = \sum_{i=1}^{c} \omega_j^b \cdot \omega_{i,j}^s \cdot \widetilde{D}_{i,j}^c$ 





#### color contrast

Euclidean distance between mean color in Lab color space

#### background weight

background probability of super-pixel *j* computed by boundary connectivity

spatial weight

Euclidean distance between centers of super-pixel *i* and *j* 



### **Depth-based saliency**



- Local depth contrast
  - a salient object tends to outstand from its surroundings in depth space

center of super-pixel *i*   $S_i^d = \sum_{\theta} \widetilde{D}^d (\widehat{p}_i, P_i(\theta))$ set of pixels on the scanning radius emitting from  $\widehat{p}_i$  with angle  $\theta$ 

Manhattan distance between the depth of  $\hat{p}_i$ and the minimum depth of  $P_i(\theta)$ 

#### **Fusion and refinement**



- Element-wise product
  - common salient regions
- Depth-biased weighting
  - regions closer to us
- Emphasize precision









# **Saliency propagation**



- Cellular Automata
  - cell: super-pixel, state: saliency value
  - propagate based on current state, neighbors' states, and similarity
  - Salient regions share similar features

state neighbor coherence term coherence term

$$S_{i}^{*} = \alpha_{i}S_{i} + (1 - \alpha_{i})\sum_{j=1}^{N} \omega_{i,j}^{F}S_{j}$$

weigh the influences of adjacent super-pixels, in which the impact factor is based on both color cue and depth cue





#### Datasets



#### NJU2000<sup>[1]</sup>

- 2000 stereo images
  - disparity recovered by optical flow
- 3D movies / Fuji W3

#### RGBD1000 <sup>[2]</sup>

- 1000 RGB-D images
- Microsoft Kinect





 $[1] R. Ju \ et \ al. \ Depth-Aware \ Salient \ Object \ Detection \ Using \ Anisotropic \ Center-Surround \ Difference. \ SPIC \ 2015$ 

[2] H. Peng et al. RGBD Salient Object Detection: A Benchmark and Algorithms. ECCV 2014



#### **Component evaluation**





- Fusion: improve precision
- Propagation: improve recall

### **Performance evaluation**



|                  |      | NJU                  | 2000   | RGBD1000             |        |  |  |
|------------------|------|----------------------|--------|----------------------|--------|--|--|
|                  |      | $F_{\beta}^{\omega}$ | MAE    | $F_{\beta}^{\omega}$ | I MAE  |  |  |
| 2D<br>methods    | FT   | 0.2009               | 0.2973 | 0.1583               | 0.2175 |  |  |
|                  | RC   | 0.4025               | 0.2306 | 0.1689               | 0.2856 |  |  |
|                  | MC   | 0.3749               | 0.2278 | 0.3018               | 0.1735 |  |  |
|                  | GMR  | 0.4265               | 0.2174 | 0.3838               | 0.1593 |  |  |
|                  | RBD  | 0.4678               | 0.1939 | 0.4300               | 0.1222 |  |  |
|                  | BSCA | 0.4040               | 0.2270 | 0.2886               | 0.1961 |  |  |
| RGB-D<br>methods | DP   | 0.3062               | 0.2896 | 0.1654               | 0.3305 |  |  |
|                  | SS   | 0.3507               | 0.2102 | 0.2323               | 0.1750 |  |  |
|                  | SD   | 0.3430               | 0.2144 | 0.4647               | 0.1091 |  |  |
|                  | ACSD | 0.4318               | 0.2031 | 0.3310               | 0.1452 |  |  |
|                  | Ours | 0.6009               | 0.1634 | 0.5487               | 0.0974 |  |  |



- State-of-the-art performance
- RGB-D methods aren't always better than 2D methods

8.0

· How to manipulate depth data is crucial

#### **Comparison with 2D methods**





• Depth cue takes positive effect in our method



#### **Comparison with RGB-D methods**





- State-of-the-art performance
  - better integration of color cue and depth cue

#### **Comparison with other methods**



| POR AL YO' |   | <b>FQ</b> ( <b>T</b> ) | T ON |          |     | r fri |    |   |   |     |    |   |
|------------|---|------------------------|------|----------|-----|-------|----|---|---|-----|----|---|
|            |   |                        |      |          |     |       |    |   |   | 1   |    |   |
|            |   |                        | 7    |          |     |       |    |   |   |     |    |   |
|            |   |                        | 9    |          |     |       |    |   |   | 0   |    |   |
|            | * |                        |      |          | NF. |       | Le |   | * | 14  |    | * |
|            | ĕ |                        |      | <b>Ö</b> | -   | ا     |    | 8 | 5 |     | Č. |   |
|            |   | APP -                  | E    | L.       | LB. | B     | G  |   |   | -   |    |   |
|            |   |                        |      | *        |     | 17-   |    |   |   | ¥ 4 | 谜  |   |

Input images Ground truth State-of-the-art methods

Our method







• Fusion failure







result



ground truth

• Propagation failure



cannot propagate to the whole depth space or to regions with totally different appearance





result



ground truth



### Conclusion



- RGB-D saliency by evolution strategy
  - 1. initiate by different cues separately
  - 2. fuse to roughly locate the salient regions
  - 3. propagate to capture the whole salient object
- Integration of color cue and depth cue
- State-of-the-art performance
- Each component could be improved individually







# **Thank You**

guojf@smail.nju.edu.cn