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• Find visual attractive objects

• Multimedia applications
• Image and video compression
• Image editing and manipulating
• Video summarization
• Content-based image retrieval
• ……

Salient object detection
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gradient map

Content-aware image resizing

saliency map

[1] S. Avidan & A. Shamir. Seam Carving for 
Content-Aware Image Resizing. TOG 2007
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• Low-cost depth sensors

• Depth data provides important spatial information
• complementary to color channels
• potential to improve salient object detection
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• How to manipulate depth data?

• always noisy

• may conflict with color cue
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Color saliency:
characters on the wall

Depth saliency:
bonsai
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• Evolution strategy for RGB-D saliency

1. initiate by different cues separately
2. fuse to roughly locate the salient regions
3. propagate to capture the whole salient object
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• SLIC - simple linear iterative clustering [1]

• simple, fast, adhering to boundaries

• Extend to RGB-D
• bring depth in spatial proximity term

[1] R. Achanta et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. TPAMI 2012
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Expected size

Search region

Expected size

Search region
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• Weighted global color contrast

• rarer colors tend to be salient
• weighted by background probability and 

spatial distance
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background weight
background probability of
super-pixel 𝑗 computed by
boundary connectivity spatial weight

Euclidean distance between
centers of super-pixel 𝑖 and 𝑗

color contrast
Euclidean distance between
mean color in Lab color space
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• Local depth contrast

• a salient object tends to outstand from 
its surroundings in depth space
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Manhattan distance between the depth of 𝑝̂"
and the minimum depth of 𝑃" 𝜃

center of super-pixel 𝑖

set of pixels on the scanning radius
emitting from 𝑝̂" with angle 𝜃
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• Element-wise product

• common salient regions

• Depth-biased weighting
• regions closer to us

• Emphasize precision
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• Cellular Automata

• cell: super-pixel, state: saliency value
• propagate based on current state,

neighbors’ states, and similarity
• Salient regions share similar features
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weigh the influences of adjacent super-pixels,
in which the impact factor is based on both 
color cue and depth cue

state 
coherence term

neighbor 
coherence term
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NJU2000 [1]

• 2000 stereo images
• disparity recovered by optical flow

• 3D movies / Fuji W3
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RGBD1000 [2]

• 1000 RGB-D images

• Microsoft Kinect

[1] R. Ju et al. Depth-Aware Salient Object Detection Using Anisotropic Center-Surround Difference. SPIC 2015

[2] H. Peng et al. RGBD Salient Object Detection: A Benchmark and Algorithms. ECCV 2014
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• Fusion: improve precision
• Propagation: improve recall
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NJU2000 RGBD1000
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• State-of-the-art performance
• RGB-D methods aren't always better than 2D methods

• How to manipulate depth data is crucial
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NJU2000 RGBD1000
𝐹@A MAE 𝐹@A MAE

2D
m

et
ho

ds

FT 0.2009 0.2973 0.1583 0.2175
RC 0.4025 0.2306 0.1689 0.2856
MC 0.3749 0.2278 0.3018 0.1735

GMR 0.4265 0.2174 0.3838 0.1593
RBD 0.4678 0.1939 0.4300 0.1222

BSCA 0.4040 0.2270 0.2886 0.1961

R
G

B-
D

m
et

ho
ds

DP 0.3062 0.2896 0.1654 0.3305
SS 0.3507 0.2102 0.2323 0.1750
SD 0.3430 0.2144 0.4647 0.1091

ACSD 0.4318 0.2031 0.3310 0.1452
Ours 0.6009 0.1634 0.5487 0.0974
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• Depth cue takes positive effect in our method
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NJU2000 RGBD1000
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• State-of-the-art performance
• better integration of color cue and depth cue
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NJU2000 RGBD1000
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• Fusion failure

• Propagation failure
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cannot propagate to the whole depth space
or to regions with totally different appearance

result ground truth

result ground truth

Wrong!
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• RGB-D saliency by evolution strategy

1. initiate by different cues separately
2. fuse to roughly locate the salient regions
3. propagate to capture the whole salient object

• Integration of color cue and depth cue
• State-of-the-art performance
• Each component could be improved individually
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Thank You

guojf@smail.nju.edu.cn


