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ABSTRACT
Saliency cuts aims to segment salient objects from a given saliency
map. The existing saliency cuts methods focus on dealing with
RGB images and videos, but ignore the exploration of depth cue,
which limit their performance on RGB-D images. In this paper, we
propose a novel saliency cuts method on RGB-D images, which
utilizes both color and depth cues to segment salient objects. Given
a saliency map, we �rst generate segmentation seeds with adaptive
triple thresholding. Next, we extend GrabCut by combining depth
cue, and use it to generate a roughly labeled map. Finally, we
re�ne the boundary of the salient object adaptively, and produce an
accurate binary mask. To the best of our knowledge, this method
is the �rst speci�c saliency cuts method for RGB-D images. We
validated the proposed method on the largest RGB-D image dataset
for salient object detection, named NJU2000. The experimental
results demonstrate that our method outperforms the state-of-the-
art methods.
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1 INTRODUCTION
As a special task in object segmentation, saliency cuts aims
to automatically segment salient objects from a given saliency
map [8]. It can be used in numerous applications, such as object
classi�cation [2, 13], retrieval [11, 12, 21], social media analysis [17,
19, 24], and image annotation [20, 27]. Di�erent to traditional object
segmentation methods [25, 26, 28, 29], saliency map generated by
saliency detection algorithm [10, 14] is the main input of saliency
cuts. In contrast, original images or videos are ignored [1, 22] or
used to improve re�nement [6, 16].
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Figure 1: An example of the e�ect of depth cue in saliency
cuts. The saliency cuts result (e) using color cue (a), depth
cue (b) and saliency map (c) is better than the one (d) only
using color cue and saliency map.

The existing saliency cuts methods are proposed to deal with
RGB images and videos. For example, Otsu et al. produced segmenta-
tion results using thresholds from gray-Level histograms of saliency
maps [22]. Achanta et al. segmented from the saliency value and
luminance of saliency map [1]. Fu et al. generated saliency cuts
results via professional labels [8]. Cheng et al. used a �xed threshold
to binarize the saliency maps and produced results from iterative
GrabCut calculation [6]. Li et al. fed segmentation seeds generated
with adaptive triple thresholding method to GrabCut algorithm to
produce segmentation results [16]. Banica et al. segmented video
object via salient segment chain composition [3].

However, these methods ignore the exploration of depth cue,
which prevent them to produce better performance on RGB-D
images than on RGB images. Figure 1 shows an example of the
e�ect of depth cue in saliency cuts. The saliency cuts result of
motorcycle (Fig 1(d)) is incomplete using only color cue (Fig 1(a))
and saliency map (Fig 1(c)), because of the complexity and diversity
of motorcycle’s appearance in color cue. However, the motorcycle’s
appearance in depth cue (Fig 1(b)) is relatively simpler, which can
help segmenting the motorcycle from the background. Hence, a
possible improvement of saliency cuts is to combine color cue with
depth cue to produce a better saliency cuts result (Fig 1(e)).

Based on the above observation, we propose a novel saliency
cuts method on RGB-D images. Figure 2 shows an overview of
the proposed method. We �rst use adaptive triple thresholding
algorithm [16] to generate segmentation seeds from a given saliency
map. Then, we feed the segmentation seeds to depth-aware GrabCut
algorithm to generate roughly labeled map. Finally, we produce
an accurate binary mask via adaptive boundary re�nement. As
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Figure 2: Anoverviewof our proposedmethod.Given a saliencymap (a), we�rst generate segmentation seeds (b) using adaptive
triple thresholding. Next, we feed these segmentation seeds to depth-aware GrabCut to generate roughly labeled map (c).
Finally, we re�ne the boundaries adaptively to produce accurate segmentation result (d).

far as we know, it is the �rst speci�c saliency cuts method on
RGB-D images. We validated our method on the largest RGB-D
image dataset for salient object detection, named NJU2000 [15].
The experimental results show that our method outperforms the
state-of- the-art saliency cuts methods on RGB-D images.

Our contributions mainly include:
• We propose the �rst saliency cuts method on RGB-D

images combining adaptive triple thresholding segmenta-
tion seeds generation, depth-aware GrabCut, and adaptive
boundary re�nement.

• We extend the GrabCut algorithm on RGB-D images via
combining the color cue and depth cue.

• We validate our method on NJU2000 dataset, and our
method is superior to the state-of-the-art methods.

2 OUR METHOD
2.1 Segmentation Seeds Generation via

Adaptive Triple Thresholding
We generate segmentation seeds from saliency map using adaptive
triple thresholding [16]. Assume the value range of saliency map
is [0,H ], where H equals 255 in our experiments. tl , tm and th are
the three thresholds used to divide saliency map Ms into four parts:
Ms = Ωs

cb∪Ω
s
pb∪Ω

s
pf ∪Ω

s
cf . Here, Ωs

cb , Ωs
pb , Ωs

pf and Ωs
cf denote

certain background, probable background, probable foreground and
certain foreground, which contain the pixels whose saliency values
are in the value range of [1, tl ], [tl +1, tm], [tm+1, th] and [th+1,H ],
respectively. Obviously, the intersection of each two in Ωs

cb , Ωs
pb ,

Ωs
pf and Ωs

cf is ∅. Assume n is the number of pixels on Ms , and
ncb , npb , npf and ncf are the numbers of pixels on Ωs

cb , Ωs
pb , Ωs

pf
and Ωs

cf , respectively. tl , tm , th are calculated as follows:

{tl , tm , th } = argmax{ωcbωpb (µcb −µpb )2+ωcf ωpf (µcf −µpf )2},
(1)

where ωcb , ωpb , ωpf and ωcf are the weights of Ωs
cb , Ωs

pb , Ωs
pf

and Ωs
cf , which equal ncb

n , npb
n , npf

n and ncf
n , respectively; µcb ,

µpb , µpf and µcf are the average saliency value of Ωs
cb , Ωs

pb , Ωs
pf

and Ωs
cf , respectively.

2.2 Depth-aware GrabCut
The segmentation procedure in GrabCut algorithm can be consid-
ered as a mini-cut problem [23]. We extend the energy function E

of GrabCut by combining depth cue:

E = αE ′(L,Kc ,θc ,Zc ) + (1 − α )E ′(L,Kd ,θd ,Zd ), (2)

where L is the label set; Kc and Kd are the parameter sets of GMM
model on color cue and depth cue; θc and θd are gray histogram of
foreground or background on color cue and depth cue; Zc and Zd

are the gray value sets of color cue and depth value set of depth
cue; α is a parameter for combination, which equals 0.5 in our
experiments; E ′(L,K ,θ ,Z ) is the energy function of color cue and
depth cue, which is de�ned as follows:

E ′(L,K ,θ ,Z ) = U (li ,ki ,θ , zi ) +V (L,Z ), (3)

where U (li ,ki ,θ , zi ) is the data term; V (L,Z ) is the smooth term,
which is calculated as follows:

V (L,Z ) = γ
∑

(m,n)∈C

[ln , lm] exp−βDis (zm , zn )2, (4)

where constant γ equals 50 [4]; C is the set of pairs of neighboring
pixels; β = (2〈(zm − zn )2〉)−1 and 〈·〉 in β denotes expectation over
an colorful image; Dis (zm , zn ) denotes the distance between pixels
m and n.

Referring to [9], we use Euclidean distance Disc (zm , zn ) on color
cue and geodesic distance Disd (zdm , zdn ) on depth cue, respectively,
because geodesic distance can better extract the spatial property of
depth cue. We de�ne Disc (zm , zn ) as follows:

Disc (zcm , z
c
n ) = | |z

c
m − z

c
n | |, (5)

where zcm and zcn are the gray value of pixelm and n on color cue,
respectively, and de�ne Disd (zdm , zdn ) as follows:

Disd (zdm , z
d
n ) = min{φm,n }, (6)

where φm,n denotes the distance of a path between pixelm and n,
which is calculated as follows:

φm,n = max
i, j ∈Pm,n

{| |zdi − z
d
j | |}, (7)

where i and j are two neighbor pixels on path Pm,n ; zdi and zdj are
the depth value of i and j on depth cue.

Based on the above depth-aware GrabCut algorithm, we generate
a roughly labeled mapMr l , which contains Ωr l

cb , Ωr l
pb , Ωr l

pf and Ωr l
cf

with the similar de�nition to Ωs
cb , Ωs

pb , Ωs
pf and Ωs

cf , after we feed
the segmentation seeds Ms .
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2.3 Adaptive Boundary Re�nement
To obtain more accurate salient objects, we adaptively re�ne the
object boundaries generated by Mr l [18].

In order to avoid containing background in the segmented salient
objects, we erode Ωr l

cf as follows:

Ωr l ′
cf = fe (Ω

r l
cf , λ1R (Ω

r l
cf )), (8)

where R (Ωr l
cf ) is the radius of circumcircle of Ωr l

cf ; λ1 is a parameter,
which equals 0.1; fe (Ω,R) is a function to erode Ω with a radius R.

Ωcl
pf is also updated as follows:

Ωcl ′
pf = (Ωr l

cf \Ω
cl ′
cf ) ∪ Ωr l

pf . (9)

Meanwhile, to improve the completeness of the segmented
salient objects, we dilate the foreground region, i.e., the union of
Ωr l
cf and Ωr l

pf , and re�ne probable background as the union of

Ωr l
pb and the newly covered region in dilation, which is de�ned as

follows:

Ωcl ′
pb = ( fd ((Ω

r l
cf ∪ Ωr l

pf ), λ2R (Ω
r l
cf ∪ Ωr l

pf ))\(Ω
r l
cf ∪ Ωr l

pf )) ∪ Ωr l
pb ,

(10)
where R (Ωr l

cf ∪Ω
r l
pf ) is the radius of circumcircle of Ωr l

cf ∪Ω
r l
pf , λ2

is a parameter, which equals 0.1; fd (Ω,R) is a function to dilate Ω
with a radius R.

Ωcl ′
cb is also updated as follows:

Ωcl ′
cb = Ωr l

cf \Ω
cl ′
pb . (11)

We re-feed the segmentation seeds Mcl ′ to depth-aware GrabCut
to generate the accurately labeled map Mdl , which contains Ωdl

cb ,
Ωdl
pb , Ωdl

pf and Ωdl
cf , and produce the accurate binary mask by

de�ning the binary value of pixels in Ωdl
cf and Ωdl

pf as 1, denoting

object, and de�ning the binary value of pixels in Ωdl
cb and Ωdl

pb as 0,
denoting background, respectively.

3 EXPERIMENTS
3.1 Dataset and Experiment Settings
We validated our method on the largest RGB-D image dataset for
salient object detection, named NJU2000, which contains 2, 000
RGB-D images with manually segmented salient object in ground
truth [15]. Saliency maps are generated using Feng’s method [7],
because it is a state-of-the-art saliency detection method on RGB-D
images.

All the experiments were conducted on a computer with 2.9GHz
Intel Core i5 CPU and 8GB memory. The average processing time
per image of our method is 2.12s. We apply the default settings of
author suggestions for all the saliency cuts methods we used in our
experiments.

3.2 Component Analysis
We �rst validate the e�ectiveness of three components in our
method, namely adaptive triple thresholding segmentation seeds
generation, depth-aware GrabCut, and adaptive boundary re�ne-
ment.
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Figure 3: E�ectiveness validation of di�erent components in
ourmethod. Fixed, Ours-A, Ours-AD, and Ours are shown in
Section 3.2.
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Figure 4: E�ectiveness comparison of our method and four
state-of-the-art saliency cuts methods, namely Otsu [22],
FT [1], AL* [8], and ASRE* [6].

We compare our method with three baselines. Fixed denotes the
method with segmentation seeds generation using �xed thresholds
which uniformly divide saliency value range ( i.e., (tl , tm , th ) equals
(64, 128, 192)), original GrabCut and no boundary re�nement, and
add three components of our method in sequence to generate the
comparison methods. Ours-A denotes the method with adaptive
triple thresholding segmentation seeds generation, original Grab-
Cut and no boundary re�nement. Ours-AD denotes the method
with adaptive triple thresholding segmentation seeds generation,
depth-aware GrabCut and no boundary re�nement. Ours denotes
our proposed method, which uses adaptive triple thresholding
segmentation seeds generation, depth-aware GrabCut and adaptive
boundary re�nement.

Figure 3 shows the precision, recall and Fβ values of method
Fixed, Ours-A, Ours-AD and Ours, here β2 = 0.3 [5]. We can
see that the recall and Fβ value grow from method Fixed to
Ours while precision value keeps relatively consistent. It indicates
that each component in our method can help generating better
saliency cuts results via improving the completeness of salient
object segmentation.

3.3 Comparison with State-of-the-Arts
We also compare our method with four state-of-the-art saliency
cuts methods, namely Otsu [22], FT [1], AL [8], and ASRE [6].
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Figure 5: Examples of saliency cuts results of di�erentmethods. (a) Color cue. (b) Depth cue. (c) Saliencymap. (d) Ground truth.
(e) Otsu. (f) FT. (g) AL*. (h) ASRE*. (i) Ours.

Here, Otsu and FT use only saliency maps as input; AL and
ASRE generate segmentation seeds from saliency maps, and feed
segmentation seeds and RGB images to GrabCut algorithm. To
make fair comparison, we extend AL and ASRE to AL* and ASRE*
by replacing GrabCut with depth-aware GrabCut, because the later
obtains better segmentation performance on RGB-D images.

Figure 4 shows the comparison results of �ve methods. We
can see that our method outperforms other methods on Fβ value,
because it achieves the best balance between precision and recall.
It indicates that our method segments the most complete and
accurate salient objects in all �ve methods. Figure 5 shows some
segmentation results generated by �ve saliency cuts methods
on RGB-D images. It shows that our method produces the best
segmentation results on various salient objects, such as car, animal,
and person.

4 CONCLUSION
In this paper, we proposed the �rst saliency cuts method on RGB-
D images, which utilizes segmentation seeds generation using
adaptive triple thresholding , depth-aware GrabCut and adaptive
boundary re�nement. The proposed method was validated on
NJU2000 dataset. The experimental results show that our method
is superior to the state-of- the-art saliency cuts methods on RGB-D
images.
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