Human-centric Visual Relation Segmentation Using Mask R-CNN and VTransE

<u>Fan Yu</u>

Xin Tan

Tongwei Ren Gangshan Wu

State Key Laboratory for Novel Software Technology, Nanjing University

Introduction

 Human-centric visual relation segmentation: estimate humanobject relations and human-human relations in the form of <human, predicate, object> or <human A, predicate, human B>

- Focus on human: the subject in the triple must be human <human A, ride, bike>
- Need to estimate the masks: subjects and objects can be represented with their shapes, not just the bounding box

Our Method

Object Instance Segmentation

- Human instance segmentation: combine the human instance segmentation exported by Mask R-CNN and face detection result exported by ERT
- Relation prediction: import the bounding box of humans and objects into the retrained VTransE model and export the relation triples

image

Our Method Object Instance Segmentation

- Mask R-CNN extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition
- According to the object categories provided by PIC dataset, we retrain the last layer of Mask R-CNN model with this loss function:

$$L = L_{class} + L_{box} + L_{mask}$$

The result contains **object** instance segmentation
and **human** instance segmentation

Multimedia AnalyzinG and UnderStanding

Our Method Human Instance Segmentation

- Object instance segmentation result generated by Mask R-CNN omit some human in some images.
- We use ERT method to detect human faces and estimate the location of the whole human body with face location and common sense.
- Mask exporting from Mask R-CNN should have a higher priority and the expanding of face detection should be a supplementary result.

Our Method Relation Prediction

human next-to human human behind human human on grass human in-front of human human next-to human

human next-to human human look human human on vegetation human next-to human

human next-to human human next-to human human look bag human in-front-of table human next-to human

- VTransE predicts relations from an image in an end-to-end fashion and refers to a visual relation as a subject-predicateobject triple.
- Inputs are original images and bounding box exporting from the result of human and object instance segmentation
- We filter out the triples with little probability and keep the triples with the same subject and object but higher score
- We remove some of the result according to language prior

Experiments

	training set	validation set	test set
image	10000	1135	2998
subject/object category	85	85	85
relation category	31	31	31
segment	106959	12061	-
visual relation instance	167916	18729	-

I7 3.5GHz CPU, 32GB memory, 1080Ti GPU, 1.9 seconds per image

Mask R-CNN + VTransE: retrained Mask R-CNN model and retrained VTransE model Mask R-CNN * + VTransE: fine-tuned Mask R-CNN model and retrained VTransE model Mask R-CNN * + relation prior + VTransE: filter infrequent result

Mask R-CNN * + face detection + relation prior + VTransE: additional face detection

Method	R@100 (m-IoU: 0.25)	R@100 (m-IoU: 0.5)	R@100 (m-IoU: 0.75)	Mean score
Mask+VTransE	0.3828	0.3330	0.2203	0.3120
$Mask^* + VTransE$	0.3831	0.3334	0.2204	0.3123
$Mask^* + RelPrior + VTransE$	0.4534	0.3915	0.2545	0.3673
Our	0.4693	0.3933	0.2571	0.3724

- Object instance segmentation cannot be easily improved by global parameter adjustment.
- Face detection based person localization cannot accurately localize the persons.
- Relation prior is effective to visual relation predication.

Method	R@100 (m-IoU: 0.25)	$\begin{array}{c} \text{R@100} \\ \text{(m-IoU: 0.5)} \end{array}$	R@100 (m-IoU: 0.75)	Mean score
CDG	0.3140	0.2515	0.1313	0.2323
iCAN	0.2499	0.1641	0.0939	0.1693
CATD	0.1493	0.1277	0.0879	0.1216
Our	0.4799	0.4069	0.2681	0.3850

- Our method has good generalization ability.
- Our method is better but the performance is far from the requirement in real applications.
- Human-centric visual relation segmentation is still a challenging task.

Thank you

Welcome to contact us!

Email: yf@smail.nju.edu.cn

