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Abstract Prevailing Scene Graph Generation (SGG)
approaches primarily focus on long-tail problem from
the perspective of semantic labels, such as by designing
unbiased model architectures or employing balanced sampling
techniques. However, concentrating solely on the semantic
biases neglects images that display substantial visual
dissimilarities yet bear analogous semantics, thereby inducing
ambiguity of feature representations. To bridge the gap
between semantic features and diverse visual content,
we propose a lightweight method called Relationship
Representation Diversity Enhancement (RDE) to facilitate
the training process of SGG models. To simultaneously
account for informative visual cues and robust semantics,
RDE adopts parametric reconstruction to disentangle the
relationship representation into the mean and standard
deviation parameters of a Gaussian mixture model. We
validated the effectiveness of RDE by integrating with several
typical SGG approaches during the training phase on the
Visual Genome dataset. The experimental results show that
RDE significantly improves the performance of existing
approaches without any additional inference cost or model
structure modification.

Keywords Relationship representation diversity, scene
graph generation, feature decoupling, visual-semantic repre-
sentation fusion.

1 Introduction
Scene Graph Generation (SGG) focuses on the semantics
of image content expression, which plays an important role
in the understanding of cross-modal visual scenes [1, 2].
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Due to significant advancements in object detection, object
representations have achieved a high degree of efficacy
and are proven to be crucial to SGG performance [3, 4].
Relationship representations, akin to object representations,
are equally essential to the efficacy of SGG. Nevertheless, it
is still an open challenge to produce high-quality relationship
representations. Inferior relationship representations result
in increased intra-class variance and ambiguous inter-class
gap, complicating the classifier’s ability to establish precise
decision boundaries. This demonstrates the effectiveness of
recent approaches that are equipped with heavy classifiers [5,
6]. Existing research predominantly emphasizes the quality
of relationship representations through prototype learning [7,
8]. However, while prototype learning ensures only the
consistency of semantics, it fails to foster representation
diversity. As shown in Figure 1, neglecting visual distinctions
neutralize the discriminability of relationship representations
in various visual scenarios.

Concretely, the relationship representations without diver-
sity constraints suggest two drawbacks. Firstly, according
to information bottleneck theory, the encoder consistently
eliminates a substantial amount of visual information to
ensure that relationships within the same category have highly
similar embeddings, which hinders understanding of varying
visual scenes [9]. Secondly, the visual information retained
by the encoder is predominantly representative of head
classes, thus indicating the significant long-tail problem, and
leading to conspicuous intra-class diversity and ambiguous
inter-class boundaries at the feature level, especially when
dealing with similar images with distinct semantics [10–13].
Meanwhile, incorporating both the robustness and diversity
of representations presents a trade-off problem. The challenge
stems from the heterogeneity of visual image content and
semantic relationship labels. In other words, similar images
can convey disparate semantics and the visual characteristics
of the same interaction can exhibit significant variation
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Fig. 1 Motivation of relationship representation diversity enhancement. The small red dots denote semantic prototypes, and the bigger dots
represent relationship feature vectors of different instances. (a) Neglecting visual distinctions neutralizes the discriminability of relationship
representations. (b) Diverse relationship representations benefit rare samples by enabling larger and sparser latent space.

between images. Representation refinement approaches
based on prototypes emphasize the importance of semantic
consistency [7, 14, 15]. Consequently, the decision boundary
of each category tends to be excessively rigid, leading to
confusion when the visual content undergoes significant
changes. Alternatively, if excessive visual information is
incorporated for diversity, the classifier will struggle with the
gap between sparse visual information and dense semantics,
adversely impeding classification performance [16, 17].
Considering that relying solely on either semantic consistency
or visual diversity proves insufficient, it requires to propose
an approach to balance informative visual cues and robust
semantics within relationship representations.

In this paper, we propose a novel method, Relationship
Representation Diversity Enhancement (RDE), that explicitly
supervises the training process of relationship representation
generation. To enhance relationship representations, the
characteristics of ideal optimal representations are first
analyzed. It is posited that high-quality representations
encompass two fundamental properties: (a) Precision: the
capacity to accurately present semantics; (b) Diversity:
the ability to convey unique details of visual content. In
other words, the optimal representation can be viewed as
a visual-semantic aligned fused representation. Given that
recent methodologies have adequately addressed the semantic
precision problem of representations, the proposed RDE
method focuses on enhancing representation diversity.

Specifically, the relationship representations are concep-
tualized as a Gaussian mixture model (GMM) to achieve a
balance in the integration of visual and semantic represen-
tations. Firstly, a feature disentangling network, FDVAE,
is developed based on variational auto-encoder (VAE)
architecture, which aids in differentiating between visual-
irrelevant semantic features and susceptible visual features to
facilitate representation modeling. By decoupling relationship
representations, we ensure a more focused representation of
the underlying semantics while simultaneously allowing for
the incorporation of intricate visual cues. Subsequently, a
prototype learning module is introduced to enforce constraints
on the semantic representations. Finally, an information
maintenance module is proposed that aligns the distribution of
visual representations with the comprehensive visual content.

Our contributions are summarized as: (a) We propose
a novel and lightweight plug-and-play method RDE to
enhance the diversity of the relationship representations
in SGG without additional inference cost or baseline
modification, which explores finer-grained visual-semantic
aligned representations based on instance-level visual content.
(b) We propose three key modules, consisting of a prototype
learning module for representation robustness preservation, an
FDVAE network for diverse representation disentangling, and
an information maintenance module for visual information
integration, to significantly improve the efficacy of SGG
by modeling diversity-enhanced relationship representations



Relationship Representation Diversity Enhancement for Scene Graph Generation 3

with various visual details.

2 Related Work
2.1 Scene Graph Generation

A highly discussed topic in recent SGG research is the
problem of data bias, which highlights the significant
challenge posed by long-tailed distributions [18]. Some
recent work addresses the issue of data bias through diverse
strategies, like relationship correlations finding [19–22],
network architecture improvement [6, 23–25] and data
augmentation [26, 27]. Prototype learning and decoupling
learning are also recognized as important strategies to
facilitate unbiased SGG research. The first attempt to
incorporate prototype learning into SGG is documented as a
memory machinism [14]. To further exploit the representation
properties of scene graphs, HLB concentrates on suppressing
message passing of heterogeneous nodes, emphasizing the
feature distribution of relationships, and constructing implicit
soft prototypes [15]. The proposal of PENET represents
a substantial advancement in illustrating the efficacy of
the prototype-based approach [7]. It seeks to construct
semantic prototypes for both objects and relationships.
Subsequently, more prototype-based approaches have been
proposed. Chen et al. constructs three prototype centers for
each relationship for a stronger prototype representation capa-
bility [8]. Zhang et al. introduces a more complex prototype
strategy on concepts to model relation representations [28].
Decoupled learning for SGG is also a rising field. Tao et
al. emphasize the importance of accurate object labeling
and decompose object representations, allowing relationship
prediction to benefit from precise object labeling [4]. Recent
studies have also delved into spatial relationship modeling
within 3D scenes. ScenePalette models multiplex relations
among 3D objects to facilitate contextual exploration [29].
Zhang et al. utilized spatial relation priors to expedite 3D
indoor scene synthesis [30]. These investigations underscore
the significance of spatial and relational diversity in 3D
environments, which resonates with our emphasis on
representation diversity in common scene graphs.

Different from the existing approaches, we focus primarily
on the balance of stable semantics and diverse visual
information, rather than merely the consistency of semantic
representations.

2.2 Feature Disentangling Learning

The primary objective of feature disentangling is to identify
component of task-specific characteristics that are robust to
varying inputs. In several fields, feature disentangling learning

represents significant performance, including human pose
reconstruction, object classification, and action recognition
tasks [31–33]. In the context of disentangling-based SGG,
a notable challenge arises from the substantial visual
differences, resulting in significant intra-class variations
and inter-class ambiguity. Existing work addresses the
issue of visual variance by isolating the semantics of
objects and relations [4]. The central concept of this
disentanglement paradigm is that various visual contents can
convey unique semantic meanings, thereby pushing the feature
representations towards a finer-grained fashion. However, it
overlooks the possibility that identical semantics can manifest
itself in a variety of visual contexts.

Consequently, we propose a disentangling strategy,
FDVAE, that emphasizes the disentanglement of relationship
representations. The proposed FDVAE not only suggests
the disentangling of visual and semantic representations,
but also examines the implications for the quality of
relationship representations when decoupled representations
are recombined to varying degrees.

3 Our Method
3.1 Problem Formulation

A scene graph is composed of a set of relation triplets
⟨subject, relationship, object⟩. In our method, we focus on
improving the quality of the relationship representations
F = {f1, . . . , fK} derived from relationships in relation
triplets. Here, K equals the total number of different types of
relation triplets, i.e., the relationship in each type of relation
triplet is represented separately. Assuming that well-learned
representations consist of stable semantic facts and informa-
tive visual cues, we formulate the relationship representation
distribution as a GMM, i.e., fk ∼ GMM(µk,σk). Here,
µk denotes the vector of the mean value of parameterized
fk; σk denotes the vector of the variation of parameterized
fk. σk is further divided into two components, σs

k and σo
k,

to depict the variation in relationship features caused by the
semantic category of the subject and the semantic category of
the object, respectively. For example, the visual representation
of the “holding” relationship may differ when the subject is
“person” versus “dog”, which is captured by σs

k. We refining
fk to ensure that µk remains consistent with the underlying
semantic information, while σk represents diverse visual
content.

3.2 Feature Disentangling Module

We design a VAE-based network, FDVAE, for the parametric
disentangling of relationship representations. The training
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target of FDVAE is to learn a reversible progress for modeling
fk, i.e., FDVAE can translate fk into a combination of
µk,σ

s
k,σ

o
k, and vice versa:

fk ↔ µk + σs
k + σo

k. (1)

We then present the network structure of FDVAE and
illustrate the rationale of the underlying design, specifically
focusing on the aspect of information transmission. The
iterative encoder network consists of six stacked encoder
blocks. This fixed number of blocks is selected based on
preliminary experiments to balance representation quality
and computational cost. As depicted in Figure 3, we illustrate
the information transmission route in FDVAE of a given
relationship sample. The encoder component of FDVAE is
responsible for decomposing the representations of the input
relationships fk, which encode various forms of information
I, into various parameters of the GMM. These parameters
represent distinct types of information I, presented in the
red dotted box in Figure 3. The original representation
fk comprises the information I(Sr, Vs, Vo, Vδ), where Sr

presents the semantic label of the relationship, Vs and Vo

stand for the visual cues of the subject and the object,
respectively. In addition, some negligible visual details,
denoted as Vδ, which make minimal contributions to the
quality of feature representations will be discarded. Based
on the principles of information bottleneck theory, deep
neural networks strive to concentrate on the most informative
attributes while discarding extraneous or duplicate ones [17].

Thus, we can model the forward propagation of the encoder
as a process of information attenuation. As shown in Figure 4,
we design the encoder network as an information attenuation
network. Considering that the removal of information, e.g.,
sparsification, is not robust for training and could lead to
the collapse of model parameters, we employ an equivalent
process to weaken unimportant information by repeatedly
emphasizing important ones. The progress of the encoder
network can be formulated as follows:

X (0) = fk,

X (l) = X (l−1) +∆I,
(2)

where X (l) is the output of the l-th encoder block, and also
the input of the (l + 1)-th encoder block; ∆I is an updater
of X by extracting relevant information from the reference
vectors. Specifically, the encoding process of µk and σk can
be formulated as follows:

X (l)
µk

= X (l−1)
µk

+ g(Attn(X (l−1)
µk

,Pk) · Pk),

X (l)
σk

= X (l−1)
σk

+ g((1−Attn(X (l−1)
σk

,µk)) · µk),
(3)

where Pk is the prototype of µk, and g(·) is a basic non-linear
unit, including a Linear layer and a ReLU layer. The function
Attn(·, ·) denotes the computation of the cross-attention map
between the input vector X and the reference vector ref ,
which indicates the semantic similarity between these vectors.
For Xµk

and Pk, the outcome of Attn(Xµk
,Pk) is simply

employed as a standard cross-attention layer. Conversely,
when addressing Xσk

and µk, the objective is to extract
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Fig. 3 Design of our proposed FDVAE network.

information from σk that is unrelated to µk. Consequently,
a negation operation is applied to the attention matrix, as
illustrated in Eq(3).

In addition, the role of the decoder is to recombine
GMM parameters to reconstruct the original input relation
features, effectively restoring the decoupled information.
The decoder is designed with three key considerations.
First, reversibility is ensured by directly incorporating
the parameterized components, and a simple linear layer
is introduced as sampling generation. Second, random
noise is avoided. In general, a conventional VAE network
incorporates a random sampler, and the decoding process
can be denoted as f ′

k = ϵ ∗ (µk + σk), to enhance the
diversity of the reconstructed features. Unlike conventional
VAEs that rely on random samplers to introduce noise
for enhancing diversity, our σk encodes meaningful visual
variations derived from individual instances. Consequently,
we omit the random sampler to prevent the dilution of useful
visual cues, and our decoding progress can be formulated as
f ′
k = µk + ϵ ∗ σk. Third, to improve the robustness of the

reconstructed relationship representations, we further adopt
a shuffle operation, as shown in Figure 2, to combine µk

with random σ as f ′′
k . For each input data pair (µk, σk)

in a training batch, we construct two training samples for
decoder input, including the original data pair (µk, σk) and
the shuffled data pair (µk, σj). Specifically, σj in the shuffled
pair is randomly selected from the σ parameters of other
samples within the same batch.

3.3 Prototype Learning Module

The prototype learning module primarily employs a con-
trastive learning strategy to ensure the discrimination of
prototypes. For the relationship representation optimization,
we aim to minimize the distance between each parameterized
feature µk and its corresponding prototype Pk. The semantic
prototypes Pk are learnable vectors initialized with random
values. During training, Pk are updated iteratively along
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with other model parameters to minimize the prototype
contrastive loss. This joint training ensures that the prototypes
are dynamically aligned with the semantic characteristics
of the relationship categories. In practice, the distance D
between µk and Pk is defined as follows:

D(µk,Pk) = L2(µk) · L2(Pk) + ||µk − Pk||2, (4)

where L2 is a standard L2 normalization function. Following
L2 normalization, the dot product can be utilized to measure
the cosine similarity between µk and Pk. Meanwhile, the
magnitude of µk − Pk serves as a metric to evaluate
the Euclidean distance. Furthermore, due to the highly
imbalanced distribution of real samples, alignment between
instances and prototypes leads to significant bias. In other
words, the data bias tends to push a large number of head
samples away from tail samples, while the distance between
tail samples is challenging to increase. To address this data bias
problem, we also employ a similar contrastive learning process
between prototypes to avoid mode collapse. The process
of contrastive learning is guided by a prototype learning
loss, denoted as Lproto. This loss function is a composite
of D(µk,Pk) and D(Pk,P∼k). Here, D(·, ·) represents the
distance metric as defined in Eq.(4), which incorporates
both cosine similarity and Euclidean distance. The term P∼k

refers to the set of all prototypes excluding Pk. Finally,
the initialization strategy for prototypes is implemented
using random vectors. Sometimes, word vectors from a
pre-learned vocabulary are employed for initialization [34].
However, while initialization remarkably influences non-
learning prototype strategies, such as the exponential moving
average, it has minimal impact on learning-based prototype
updating strategies [4].
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3.4 Information Maintenance Module

The objective of the information maintenance module is
to model the distribution of relationship representations by
learning specific distribution parameters σk. Even within
the same category of relationships, there are notable
differences in visual content. These substantial visual
variations are primarily influenced by relation triplets. As
illustrated in Fig. 5, we performed a statistical analysis on
approximately 30k samples and employed T-SNE to visualize
their visual representations, thereby further validating
the significance of relation triplets. When representations
are grouped by different predicates, the clusters exhibit
ambiguous separability. A comparison between Fig. 5(a)
and Fig. 5(b) indicates that substantial visual variations are
primarily introduced by the subject/object rather than the
predicate. We aim for IMM to model the distribution of
relationships such that the same predicate semantics can
share similar representations. To this end, we introduce
triplets encompassing the subject, object, and predicate
to simultaneously account for both semantic and visual
differences. In this context, the information maintenance
module enables a diverse understanding of visual content
by explicitly modeling the latent space of relationships
corresponding to the relation triplets.

Specifically, for a given relation triplet k, we propose that
the relationship representation fk should follow a GMM
distribution GMMk. With N relationship classes and M

object classes, we can constructM2N distinct relation triplets,
resulting in M2N distinct GMM distributions. We define
GMM sparsity as the number of distinct GMM distributions,
indicating that the sparsity of relationship representation

constructed by this module isM2N . Furthermore, we observe
that, in most cases, merely using the categories of objects
can determine the predominant visual content, while other
visual information contributes minimally to understanding
relationships beyond the scope of a relation triplet region.
Finally, we can use the subject/object classification task to
regulate the σk as follows:

Linfo = argmin(w2 ·ReLU(w1 · σk),m), (5)

where m is the one-hot distribution of subject/object classes,
and Linfo is the cross entropy loss of object classification.
We also explore alternative GMM modeling strategies with
varying sparsity, which are further elaborated in the ablation
study section.

3.5 Training Strategy

The training loss in RDE is simply designed as a combination
of the losses in each branch. As shown in Figure 2, the overall
loss function can be formulated as:

L = Lproto + Lre + Linfo + Lpred, (6)

where Lproto pulls in the distances between µk and Pk, and
pushes out the distances between prototypes simultaneously;
Lre is the reconstruction loss, which is a combination of
MSE and cosine similarity loss functions, to ensure that the
parameterization process of the FDVAE is reversible; Finally,
Lpred is the conventional relationship classification loss.

4 Experiments
4.1 Datasets and Evaluation Metrics

We leverage the Visual Genome-150 (VG-150) as our
primary benchmark dataset [46]. It comprises annotations for
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Table 1 Comparison results of mR@K (K=20, 50 and 100) on VG-150 dataset. The bold values stand for the best results based on the
same baseline approach, and the underlined values represent the sub-optimal results.

PredCls SGCls SGDet
mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

ReIDN [35] - 15.8 17.2 - 9.3 9.6 - 6.0 7.3
GBNet-β [36] - 22.1 24.0 - 12.7 13.4 - 7.1 8.5
EBM [37] 19.9 26.7 30.0 13.9 18.2 20.5 7.1 9.7 11.6
NARE [27] 22.2 28.1 30.6 17.8 22.0 23.6 8.4 10.3 11.5
PPDL [19] - 33.0 36.2 - 20.2 22.0 - 12.2 14.4
DeC- [4] 24.1 32.6 35.2 15.0 18.3 19.1 9.5 12.8 15.3
SQUAT [38] 25.6 30.9 33.4 14.4 17.5 18.8 10.6 14.1 16.5
TsCM [39] - 37.8 40.9 - 22.4 23.8 - 17.4 19.7
FGPL-A [40] - 36.3 40.7 - 23.2 24.5 - 17.0 19.8
CFA [41] - 35.7 38.2 - 17.0 18.4 - 13.2 15.5
PENet [7] - 38.8 40.7 - 22.2 23.5 - 16.7 18.8
Cook [42] - 35.4 37.2 - 19.2 20.3 - 14.2 16.3
Motifs [11] 10.8 14.0 15.3 6.3 7.7 8.2 4.2 5.7 6.6

+HLB [15] 11.99 15.39 16.74 7.20 8.90 9.44 5.37 7.19 8.43
+TDE [18] 18.5 25.5 29.1 9.8 13.1 14.9 5.8 8.2 9.8
+Reweight [7] - 33.7 36.1 - 17.7 19.1 - 13.3 15.4
+GCL [5] 30.5 36.1 38.2 18.0 20.8 21.8 12.9 16.8 19.3
+FGPL [43] 24.3 33.0 37.5 17.1 21.3 22.5 11.1 15.4 18.2
+ADTrans [44] 29.0 36.2 38.8 14.8 17.0 17.8 10.6 15.5 18.1
+BiC [45] - 37.4 40.2 - 19.0 21.0 - 17.2 19.9
+RDE 32.01 39.47 42.28 19.09 23.26 24.47 12.62 16.82 20.19

BGNN [23] - 30.4 32.9 - 14.3 16.5 - 10.7 12.6
+HLB [15] 23.35 28.20 30.43 13.91 16.72 18.09 9.16 12.57 15.03
+RDE 26.28 33.26 36.10 15.37 18.96 20.59 9.34 13.29 16.04

Transformer [43] 12.4 16.0 17.5 7.7 9.6 10.2 5.3 7.3 8.8
+Reweight [43] 19.5 28.6 34.4 11.9 17.2 20.7 8.1 11.5 14.9
+FGPL [43] 27.5 36.4 40.3 19.2 22.6 24.0 13.2 17.4 20.3
+BiC [45] - 34.6 37.2 - 19.7 21.0 - 16.7 19.1
+RDE 31.86 39.26 42.25 19.82 23.72 24.86 12.80 16.97 19.55

108,077 images, encompassing 1,366,673 object instances
and 1,531,448 pairs of relations. These annotations are
associated with 108,249 scene graphs. SGG models are
commonly assessed using three distinct tasks [47]: Predicate
Classification (PredCls), Scene Graph Classification (SGCls),
and Scene Graph Detection (SGDet). SGDet limits that only
raw images are available. The PredCls task facilitates a
more accurate assessment of relationship classification by
allowing manually labeled object locations and categories as
input. SGCls requires the model to predict both object and
relationship categories. We adopt mR@K as the evaluation
metrics, which is widely used in SGG research.

Moreover, we also introduce Open Image V6 (OI-V6)
dataset for more comprehensive evaluation. OI-V6 dataset
has 602 object classes and 30 predicate categories. Following
previous work, we use the Recall@50 (R@50), weighted mean
AP of relationships (wmAPrel), and weighted mean AP of
phrase (wmAPphr) as evaluation metrics. The weight metric
scorewtd is computed as scorewtd = 0.2× R@50 + 0.4×
wmAPrel + 0.4 × wmAPphr. Similar to previous studies,

Table 2 More integration results with latest (DRM) or other plug-
and-play approaches (GCL) on VG dataset for the PredCls task.
Bold indicates the best results.

R@50 R@100 mR@50 mR@100
GCL [5] 42.7 44.4 36.1 38.2

+RDE 46.53 48.59 36.98 38.00
DRM [48] 43.9 45.8 47.1 49.6

+RDE 44.92 46.96 47.48 50.21

the OI V6 dataset is predominantly utilized for assessing the
performance of the SGDet task.

4.2 Comparison with State-of-the-Arts

Firstly, as shown in Table 1, we follow previous work
to integrate the RDE with some commonly-used base-
lines for fair comparison. Motifs+RDE achieves the best
overall performance among the compared plug-and-play
approaches. With the enhancement of RDE, Motifs [11]
and Transformer [43] improve by 184.9% and 147.9%,
respectively. RDE also shows an average improvement of
17.1%, 9.6%, and 41.2% compared to the baseline approaches
with unbiased training, i.e., Motifs+Reweight [7], BGNN [23],
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Fig. 6 Comparison results of R@100 of each predicate class on VG-150 dataset.

Table 3 SGDet comparison on Open Image V6 dataset.

R@50 wmAP
scorewtdrel phr

Motifs [11] 71.6 29.9 31.6 38.9
+RDE 73.3 31.5 32.6 40.3

Unbiased [18] 69.3 30.7 32.8 39.3
BGNN [23] 75.0 33.5 34.2 42.1
RUNet [24] 76.9 35.4 34.9 43.5
PENet [7] 76.5 36.6 37.4 44.9
SGTR+ [49] 72.2 39.5 41.5 45.6
MPC [50] 76.0 39.3 40.4 47.0
DRM [48] 75.9 40.5 41.4 47.9

+RDE 76.8 40.7 41.5 48.2

and Transformer+Reweight [43]. The SGCls task introduces
inaccurate object labels. Despite this, RDE outperforms
other plug-and-play methods. Although RDE incorporates
object information to aid in relationship representation
modeling, it does not depend on the accuracy of object
classification, and exhibits significant improvement compared
to the baselines on the SGCls and SGDet task. In comparison
to existing approaches based on prototypes or feature
disentanglement, i.e., PENet [7] and DeC- [4], the RDE
demonstrates superior overall performance. As illustrated in
Figure 6, we also present the performance of RDE across
each predicate class. The average R@100 metrics for the
head, body, and tail classes are 47.32, 42.91, and 40.07,
respectively. This indicates that the RDE-enhanced SGG
results exhibit a more balanced performance on long-tail data.
Secondly, we integrate RDE with a more recent baseline,
DRM [48], as well as another plug-and-play method, GCL [5].
The comparison results in Table 2 demonstrate that RDE is
compatible with other plug-and-play methods and remains
effective on the latest baseline. Finally, as shown in Table 3,
RDE shows significant improvements in both the earliest and

Table 4 Comparison with VLMs on VG dataset for the SGDet
task. Bold indicates the best results.

mR@50 mR@100
InternVL2.5-4B (w/o finetuning) [51] 0.13 0.13
QWen2-VL-7B (w/o finetuning) [52] 0.89 1.06
LLM4SGG [53] 6.26 7.60
PGSG [54] 10.5 12.7
Motifs+RDE (Ours) 16.82 20.19

latest baselines on the OI V6 dataset.
As shown in Table 4, we also perform comparison with

some recent Vision-Language Models (VLMs) on the SGDet
task using VG dataset for more comprehensive evaluations.
There are two approaches for integrating VLMs into SGG
models. The first involves directly training a VLM-based
SGG model, while the second involves incorporating a
pretrained VLM. For SGG with pretrained VLM, we evaluate
InternVL2.5-4B [51] and Qwen2-VL-7B [52]. For fair
comparison, the object detection phase is pre-processed,
and the VLMs are merely tasked with selecting relationships
from a close-set of relationships, thereby bridging the gap
between open-set and closed-set conditions. For VLM-based
SGG model, we choose LLM4SGG [53] and PGSG [54] for
comparison, as they are also specifically designed for the SGG
task. While VLMs excel in generalizability and open-domain
capabilities, they still exhibit a performance gap compared to
task-specific small models in conventional SGG scenarios.
VLMs adopt general-purpose frameworks trained on scene
graph-specific datasets rather than being tailored for SGG
tasks. As high data noise remains a prominent challenge in the
SGG field, these general architectures are more susceptible
to interference from noisy annotations during training. In
contrast, RDE is specifically designed to address the core
demands of SGG by balancing semantic robustness and visual
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Table 5 Component analysis under both biased and unbiased
setting on PredCls task.

Components Bias mR@20 mR@50 mR@100
Motifs

Yes

10.8 14.0 15.3
+Proto 12.04 15.33 16.77
+Visual 13.19 16.76 18.09
+Full 12.46 15.97 17.53

Motifs+RW*

No

28.64 34.34 36.50
+Proto 29.88 36.46 39.05
+Visual 30.29 36.80 39.23
+Full 32.01 39.47 42.28

diversity in relationship representations, enabling it to better
mitigate the impact of data noise and capture fine-grained
visual-semantic alignments.

4.3 Ablation Study

We conduct ablation studies from three perspectives.
Considering that RDE mainly concentrates on the quality of
relationship representations, ablation studies are performed
on the PredCls task to diminish bias from object detection.
Firstly, to understand the importance of semantic and
visual information, respectively, we perform experiments
that separately focus on semantic prototypes and visual
information. In addition to evaluating the feasibility of
incorporating semantic and visual cues, we identify how
visual information is preserved by GMM modeling. Finally,
we investigate how the FDVAE filters and retains information
during the process of decomposition and reconstruction.

Component analysis. We first analyze the components of
the network, and the results are presented in Table 5. It should
be noted that due to the absence of specified parameters for
previous Reweight approaches [5, 7], for a fair comparison,
we utilize our customized implementation, referred to as
RW* in Table 5. In our experiments, all hyperparameters
and codes for the reweight operation are kept consistent.
In the analysis process, biased and unbiased baselines
are constructed using Motifs and Motifs+RW* approaches,
respectively. It is interesting to find that incorporating only
visual cue enhancement yields the best results in the case
of biased training. This phenomenon is attributed to the
rich and detailed information contained in the visual cues,
which provides more discriminative evidence for the classifier.
On the contrary, although the construction of prototypes is
beneficial to the learning of tail classes to a certain extent,
the imbalanced learning process limits the upper bound of
prototype learning, making the generated samples easier to
approach the representations of head classes.

GMM modeling for visual cues. As illustrated in Table 6,
we investigate various strategies for GMM modeling. Based

Table 6 Evaluation of distinct GMM modeling on PredCls task.
underlined indicates the visual cues used by RDE.

GMM sparsity Visual cues mR@20 mR@50 mR@100
N - 29.88 36.46 39.05
N2 p 29.57 36.13 38.59
N3 p|s, p|o 30.06 36.73 39.28

M2N s, p, o 32.01 39.47 42.28
M2N3 s, p|s, p, p|o, o 31.07 38.18 40.86
+inf (s, p, o)i 31.05 38.28 40.94

on GMM sparsity, we devise five strategies to analyze the
granularity of vision-semantic alignment. We adopt the
prototype branch as the baseline, which means relationship
representations adhere to N GMM distributions defined
by N prototype centers. We subsequently implement the
information maintenance module as an auxiliary classification
branch for those hard-to-distinguish representations, where
the GMM sparsity is N2. This auxiliary branch is trained
using samples grouped by a statistical confusion matrix.
Additionally, we associate the representation variances to the
appearance of subjects and objects to expand the auxiliary
branch, extending the GMM sparsity to N3. In the proposed
RDE method, each type of relation triplet is designed to learn
a distinct GMM distribution, leading to a GMM sparsity
of M2N . Furthermore, by integrating the RDE with the
aforementioned auxiliary classification branch, the GMM
sparsity increases to M2N3. Finally, we investigate the
extremely sparse distribution by assigning each individual
relation triplet instance a variance through self-supervised
contrastive learning. However, sparser GMM distributions
do not necessarily result in better performance, as shown in
the last row in Table 6. This suggests that the granularity of
vision-semantic alignment in the SGG task corresponds to
the granularity of relation triplets, which is also intuitive.

Table 7 Ablation study on Head/Body/Tail classes.
Models All Classes Head Body Tail
Motifs 15.3 60.77 12.13 4.53
Motifs+RDE 42.28 37.00 47.33 37.87

Long-tail Performance Analysis. We subsequently
perform a comprehensive analysis of performance across
Head, Body, and Tail data categories. The mR@100 metric
is employed to assess performance on the PredCls task.
The classification of Head, Body, and Tail classes adheres
to the standard definitions established in prior research.
The RDE method achieves a balanced performance across
data partitions, with mR@100 scores of 37.00 for head
classes and 37.87 for tail classes. This indicates that our
approach effectively mitigates the long-tail bias, avoiding
excessive reliance on high-frequency head classes while
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Fig. 7 Qualitative results and analysis of our RDE method on VG dataset. The relationships marked with green denote the correctly
predicted relations, and the red words represent the wrongly predicted ones with notated labels in brackets. Several challenges or limitations
observed during the testing phase are highlighted in red dashed boxes.

Table 8 Different VAEs in Motifs+RDE framework.
Network Structure mR@20 mR@50 mR@100
Standard VAE 31.13 38.76 41.72
Transformer VAE 29.34 36.07 38.98
FDVAE (ours) 32.01 39.47 42.28

significantly enhancing the performance of tail classes. The
slight performance reduction in head classes is primarily due
to synonym confusion. For example, the model may predict
“on” as semantically similar relationships such as “sitting
on”, which reflects a more fine-grained understanding of
relationships rather than an actual performance decline.

Network Structure of the FDVAE. Finally, the network
design of the FDVAE is validated, as shown in Table 8. Our
primary focus lies on the network design of the encoder
section, since the decoder section comprises only a singular
fully connected layer. We first conduct a standard VAE
network for comparison, which is a multi-layer perceptron
that includes multiple fully connected layers and ReLU
activation units. Subsequently, we incorporate a transformer
encoder to maximize the non-linear capability of the VAE
network. Both the standard VAE and transformer VAE
used in our experiments are built following the general
framework of VAE, designed to ensure fair comparison
with our proposed FDVAE [55]. All three models share
the same overall architecture with 6 encoder layers, differing
only in the implementation of the encoder block. While
FDVAE adopts the iterative information enhancement block,
the two baselines use alternative block designs with consistent
activation layers. For standard VAE, the cross-attention layer
is replaced with two fully connected layers. For transformer
VAE, the cross-attention layer is substituted with a standard
cross-attention mechanism configured with 8 attention heads,

Table 9 Training cost of our method. All experiments are
conducted in a single RTX 4090 GPU.

Baselines Feature Params. (M) Speed (FPS)
Dim. Orig. +RDE Orig. +RDE

Motifs 4096 453.6 567.0 18.9 16.4
+25.0% +13.2%

Transformer 1024 394.3 472.9 16.3 15.4
+19.9% +5.5%

retaining the same feature propagation workflow as FDVAE.
The experimental results indicate that our proposed FDVAE
network, which is based on iterative information enhancement,
significantly outperforms the above networks.

4.4 Analysis of Training Overhead

Given that RDE is a plug-and-play training approach that
incurs no additional inference cost, only the training cost and
the size of trainable parameters are reported. The training cost
is detailed in Table 9. As the objective of RDE is to refine the
original relationship feature fk into an enhanced relationship
representation, the number of network parameters in the RDE
branch varies with the dimension of fk. In particular, since
few methods surpass a feature size of 4096 in Motifs [11],
the RDE can be considered to introduce fewer than 113.4M
additional parameters. For a more typical feature size of
1024 in Transformer [43], the RDE introduces only 78.6M
parameters. Furthermore, the reduction in training speed is
negligible.

4.5 Visualization and Qualitative Analysis

We provide some real cases produced by Motifs+RDE, as
shown in Figure 7. Although RDE can effectively improve the
performance of the baseline model, we notice that there are
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Fig. 9 T-SNE visualization of latent representations.

still some potential limitations to be discussed. Specifically,
Figure 7(a) represents a successful predicted result, where
RDE proves to accurately predict complex relationships
between objects, even for unusual classes of relation triples.
Figure 7(b) shows a moving bicycle is incorrectly predicted
as “parked on”, which indicates that the current SGG model
for still images struggles to predict actions involving temporal
information. Figure 7(c) highlights inherent problems in
the current SGG dataset, where a mass of inconspicuous
relationships is not labeled, and some of the labeled ones are
inaccurate, e.g., “riding” labeled “sitting on” and “sitting on”
labeled as “on”. Figure 7(d) demonstrates the limited ability
to capture spatial details. Many predicted relationships are
“illusions” at the semantic level, which means that they seem

reasonable but do not correspond to the actual visual scenes.
Figure 7(e) presents the difficulty in handling synonyms and
the challenges posed by the long-tail phenomenon. Figure 7(f)
reveals the limitations in representing relationships involving
object parts or attributes, such as “made of”.

Meanwhile, as shown in Figure 8, we perform a detailed
statistical analysis focusing on four head categories. It is
observed that the majority of errors arise from ambiguity in
semantic expressions. For instance, 32% of “on” predictions
are identified as synonyms, including terms such as “lying on”
and “sitting on”, and 14% of “on” are classified as subordinate
relationships, such as “of” and “part of”. A large number of
bad cases are attributed to the ambiguity of human annotation,
and the current SGG benchmarks fail to evaluate when models
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attempt to provide more detailed expressions.
Figure 9 illustrates the T-SNE visualization of latent

representations. As depicted in Figure 9(b), the prototypes
leads to better classification boundary. In contrast, the
incorporation of visual information in Figure 9(c) results
in a sparser intra-class distribution to enable better tolerance
for diverse features. This enhances the model’s ability to
generate relationship representations within an expanded
latent space, while maintaining the distinguishability of these
representations.

4.6 Limitations and Future Work

Limitations. While the proposed method enhances the
diversity of relationship representations for scene graph
generation, it still has significant limitations that warrant
attention. Firstly, it underutilizes external knowledge, relying
solely on single-dataset learning and lacking effective
integration of prior semantic information, which could further
enrich the model’s understanding of complex relationships.
Secondly, although current VLMs still have room for
improvement in specific scene graph tasks, they have shown
considerable potential, particularly in zero-shot reasoning
tasks, and the method has yet to explore how to harness
this potential. Thirdly, due to the difficulty and complexity
of relationship annotation, high dataset noise, especially
semantic ambiguity that leads to confusion between similar
relationships, is almost inevitable, and the method lacks
targeted strategies to utilize such noisy data for learning
fine-grained relationship representations.

Future Work. To overcome the aforementioned limitations,
our future work will concentrate on three key areas, with plans
for further exploration and validation. First, we aim to enhance
the integration of external prior knowledge, which could help
us move beyond the constraints of single datasets and enrich
the model’s semantic understanding of relationships within the
open-vocabulary domain. Additionally, we plan to investigate
potential methods for combining the proposed approach with
VLMs, leveraging their strengths in complex reasoning to
improve the accuracy of relationship inference. Lastly, we
will develop dedicated strategies to effectively utilize noisy
dataset resources, aiming to reduce the impact of semantic
ambiguity while enabling the model to learn more precise,
fine-grained relationship representations.

5 Conclusion
In this paper, we proposed a novel RDE method by exploring
the diversity of relationship representations in SGG. The
RDE method can be adopted in various SGG approaches

without any additional inference cost or modification of
the model architecture. Inside the RDE method, an FDVAE
network is designed to decompose relationship representations
into semantic and visual parameters. The semantic features
are constrained by prototype learning, while the visual
features are supervised by relation triplets. We applied
RDE in several baselines and conducted comprehensive
experiments to demonstrate the effectiveness of RDE in
the VG-150 and OI V6 dataset. The results show that
the learned relationship representations can facilitate finer-
grained relationship representations for SGG.
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